University of Tripoli

Computer and Electronics Engineering department

COMPUTER
ENGINEERING

Design and Implementation of Single
Precision Floating-point Arithmetic Logic
Unit for RISC Processor on FPGA

FPGA Design for Embedded Systems
EC 582

By:
Noor Alhuda Adela (022152760)
Dania K. Alamen (022160629)

Supvr:
Dr. Mohamed M. Eljhani

March 2022

Summary

In this project report, we discuss the design of an arithmetic logic
unit (ALU) and a ﬂoatinﬁ—lpoint unit (FPU) architecture that together
performs all arithmetic and logical operations of computer processors and
gives the flexibility ?fscalabz ity up to 32-bits. The ALU and FPU were
implemented in Verilog, simulated, and tested in ModelSim Altera.

Table of Contents
1. Introduction 3
1.1. Project Timeline............ i .. 4
2. Arithmetic Logic Unit Overview 4
2.1. DesignBlock......... 5
2.1.1.Opcode Decoder.t 5
2.1.2. ArithmeticBlock. 7
2.1.3. Comparatorblock. 8
2.14. Logical block. 9
2.1.5. Shifter/Rotate block. L 9
3. Floating-Point Unit Overview 10
3.1. ThelEEE 754 Standard. 10
3.2. FPUInstructions.o.iuinitiniiiinnnanan... 11
3.2.1. Floating-Point Adder/Subtractor. 11
3.2.2. Floating-Point Multiplication 12
4. ALU & FPU Synthesis Results 13
5. Conclusion 22

1. Introduction

This paper focuses on the design of the arithmetic logic unit (ALU)
and floating-point unit (FPU), which perform integer mathematical and
logic operations, and decimal mathematical operations, respectively. The
end goal of this thesis is the design, Verilog implementation, and synthesis
of the arithmetic logic unit and floating-point unit of a 32-bit reduced
instruction set computer (RISC) processor.

The input consists of an instruction that contains an operation code
(opcode), one or more operands. The operation code tells the ALU what
operation to perform and the operands are used in the operation. (For
example, two operands might be added together or compared logically.)
The format may be combined with the opcode and tells, for example,
whether this is a fixed-point or a floating-point instruction. The output
consists of a result that is placed in a storage register and settings indicate
whether the operation was performed successfully.

The remainder of the paper is divided into two parts - one each for
the ALU and FPU. The first part describes the implementation of the
functions of the arithmetic logic unit. Integer adders, multipliers, and
dividers are discussed in detail, with the basic logic operations - AND, OR,
XOR, etc. The second part of the paper describes the floating-point unit.
Implementations of single-precision adder/subtractors, multipliers, and
dividers that conform to the IEEE 754 standard are presented.

opcode.
pucode 3:0
Ay ARITH
B o7]
dnT bpegds 514
T3 CMP o
] 1 32
= a
LOG 2
—* 3
SHIFT corn
] ALU
32
out
B FPU
)
SUB N s
oprnde 514
MUL
=

Figure 1. The general architecture of hybrid ALU

) AL Ople] | FPLL

Figure 2: Flowchart
1.1 Project Timeline

We planned to follow a Bottom to up approach while designing this
ALU. Firstly, we implemented simple logic blocks such as Comparator,
Adder, Shifter, etc. in Verilog. Then after verifying their performance in
the ModelSim simulator, with respect to generated signal patterns as inputs,
we implemented the whole design.

Part1

2. Arithmetic Logic Unit Overview

An arithmetic logic unit (ALU) is an integral essential combinational
circuit of any central processing unit (CPU). The processor uses the ALU
to perform arithmetic operations such as addition, subtraction,
multiplication, and division - as well as logical operations - OR, AND,
XOR, inversion, and transformation operations. Additional operations such
as data block comparisons. The ability to perform all these results of
operations in the ALU is one of the most complex circuits in the CPU.

2.1. Design Block

Our design comprises 5 basic sections. We describe each one below
o Opcode Decoder
+ Arithmetic Block
« Logical Block
o Comparator Block
 Shifter Block

Accumulator

D-Latch|

Comparator
Block

\ EN|
ofp Latch

Opcode
.pm Opcode
Decoder

EN

/ Logical Shifter
ithmetic Shifter

Logical Unit

EN Register

L— :::ﬁv ;:]} Array
=

Figure 3 . ALU Block Diagram

2.1.1. Opcode Decoder:

The proposed design consists of a primary opcode decoder unit that
activates the respective function block based on the instruction opcode
performed by the processor and forwarded to the ALU block. The
respective output lines will feed the enable lines of respective function
blocks.

The decoder is a 6:43 unit i.e., it takes 6 bits opcode as input and in
turn activates the respective function block to perform the desired
operation.

Selected Instructions

The designed ALU takes a clock signal, two 32-bit operands, and a
6-bit opcode as inputs. A complete list of the implemented instructions can
be seen in Table 1.

SELECT ACTIVE-HIGH DATA

OPCODE ARITHMETIC COMPARRATOR LOGIC SHIFTING

54 55 =00 54 55=01 54 55=10 S455=11
50 51 52 53 Cin=0 Cin=1

00 0 0 (O0OUT=A OUT=A+1 OuUT=A=B OuUT="A OUT=shl A

00 0 1 (0UT=A+B OUT=A+B+]1 | OUT=A<B OUT="(A"B) OUT=shlB

0 0 1 0 |OUT=A+B | OUT=A+B+1) QUT=A2B QUT="AVE QUT=ghys A

001 1 (0ouT=1 ouT=0 ouT=0 OUT=shrB

01 0 0 |OUT=B OuUT=B+1 ouT="(AVB) OUT=rolA

01 0 1 |0OUT=B OUT="B+1 ouT="B OUT=rolB

01 1 0 |OouUT=A-B OUT=A-B+1 ouT=4A OUT=ror A

01 1 1 (0uUT=B-A OUT=B-A+1 ouT=A~"B OUT=rorB

1 0 0 0 |0OuUT=1 ouT=2 OUT=AYB

1 0 0 1 (0OuUT=0 ouT=1 OuUT="AMB

1 01 0 |OuT=A1 ouT=A ouT=8

1 0 1 1 (O0UT=A+A OUT=A+A+] ouT=A"B

1 1 0 0 (0OuUT=B-1 ouT=8B ouT=1

1 1 01 OUT=AY"B

Table 1. ALU Operations

Using a Combination of These operations, any logic operation can
be implemented.

2.1.2. Arithmetic Block:

This block is used to implement arithmetic operations such as
Addition, Subtraction, Multiplication, and division. The Accumulator and
the auxiliary b register feed as inputs to this block.

32
A \/ B
\ 6
& ALU
S
=

Figure 4. Arithmetic Operation

Integer Addition/Subtraction

Fast addition is extremely important in many digital systems. As an
elementary school child knows, addition and subtraction are the same
operations. Subtraction merely inverts the sign of the second operand.
Using this knowledge, it becomes simple to implement integer subtraction
using any type of integer adder.

To alter the adder to be able to handle both integer addition and
subtraction, logic must be established to perform two's complement
conversion on the B operand if subtraction is selected, and to leave B
untouched if addition is selected. This can be done in one of two ways:
using an inverter and a multiplexer on each bit, or an XOR gate with one
bit tied to control, and the other tied to the corresponding bit of B.

Integer Multiplication

Multiplication, like addition, is a heavily used operation that figures
prominently in many types of operations. Among many other uses,
multiplication is used in signal processing and scientific applications. It is
also a common basis for division.

Integer multipliers can be implemented in a variety of ways. Typical
implementations are a shift and add. The multiplication operation produces
a 64-bit output that utilizes both registers.

Multiplier
n bits
1
Partial Product n-1 bits
Muliplication
n bits Io n bits
\. mux | /
co N
n-bit Adder

sum

Figure 5. Shift and Add Multiplier Circuit

START

C,A D

M Multiplicand
Q Multiplier
Count n

Shift C, A, Q
Count Count -1

Product
inA,Q

Figure 6: Unsigned Binary Multiplication Flowchart

Integer Division

The division is the least used of the four basic arithmetic operations.
As such, it has been the least researched of the four operations and remains
the most difficult operation to implement efficiently.

Ae0D
M+ Divizor

Q «— Dividend
Count « n

Count « Count -1

Quaotient in Q
Remainder in A

Figure 7: Unsigned Binary Division Flowchart

2.1.3. Comparator block:

This block consists of combinational circuit HDL code which
performs bit matching and comparisons. Respective outputs may be used
to branch instructions based on the comparison. Similarly, numerically
larger, or smaller indications on respective operands may be used.

2.1.4. Logical block:

This block comprises basic logic gate units such as AND, OR, NOT,
XOR, etc. Such operations on data operands are served by this block.
Outputs are stored in respective latches. The logical operations implement
a series of standard logic operations on the operands at the bit level. The
AND operation produces a 1 at output bit i only if A; and B; are both equal
to 1. The OR operation produces a 1 at output bit i if 4; or B; is B; is equal
to 1, but not both. The NOR operation is the opposite of the OR operation.
A 0 1s inserted at the bit position if the operating conditions are not met.
The ENV operation inverts each bit of both A and B.

2.1.5. Shifter/Rotate block:

This block consists of basic shifters such as Barrel Shifters and
mechanisms for bit rotation. The right shift is implemented both
arithmetically - where the operation is sign-extended as it is shifted — and
logically - where 0's are inserted into the bit positions that are shifted out.

=‘ 32-bit Register ":
C_in = D31 D30 D29 D28 D27 | e-eeemeeieemeean D2 D1 Do
After Right Shift
C_in D31 D30 D29 D28 | - D3 D2 D1 Do
I 33-bit Register |
™~ 9 L
: -32-bit Registe :
D31 D30 D29 D28 D27 | s-eeeiemeeem------- D2 D1 Do —- C_in
ftilr Left Shift
D31 D30 D29 D28 D27 D26 | s--ce-eemiecccaaanan D1 DO C_in
: 3-bit registe :

Figure 8. An example for a 32 bit scaled shifter block

10

Part 11

3. Floating-Point Unit Overview

Floating-Point Units (FPU) are the hardware components that handle
decimal mathematical operations in the CPU. Like the ALU, the FPU
implements the four basic mathematical operations - addition, subtraction,
multiplication, and division - the difference being the number
representation scheme utilized. An ALU handles integer values,
represented in binary numbers. This means that the entire 32-bits of the bit
vector represents the portion of a number to the left of the decimal point.
An FPU deals with both the integer and fraction portions of numbers. As
there is no way to slide a decimal point into the bit vectors to tell the
computer what is the integer and what is the fraction, the operands must be
divided into sections representing the sign, exponent, and mantissa of the
number.

3.1. The IEEE 754 Standard

The standard supports single-precision 32-bit numbers, and double-
precision 64-bit numbers. As would be expected, double-precision offers a
larger range (11 exponent bits compared to 8) and greater accuracy (52
fraction bits compared to 23) than single-precision. As they operate in the
same manner and the focus of the work presented in this paper is on 32-bit
inputs, only the single-precision format will be explored.

sign exponent (8-bit) fraction (23-bit)
I I |
o o o
31 23 0

Figure 9: Single-Precision IEEE 754 Format

Table 2. Floating-Point: Special Cases

Number Sign Exponent (e) Fraction (f)
0 X 00000000 00000000000000000000000
0 0 11111111 00000000000000000000000
—00 1 11111111 00000000000000000000000
NAN X 11111111 nonzero

11

3.2. FPU Instructions

The instructions implemented for the floating-point unit are added,
subtract, multiply and divide.

Table 3. FPU Operations

Operation OP Code
Addition 00
Subtraction 01
Multiplication 10

3.2.1.Floating-Point Adder/Subtractor

Just as integer addition/subtraction is the most used ALU operation,
FP addition/subtraction is the most utilized floating-point operation.

+/

I FP Operands I

Unpack

|_

Subtract
Exponents

Complement
and swap

Sign Logic

Align
Significands

Add

T Adjust Exp

!

Normalize

Pack

-

FP Sum/Difference

Figure 10. Block Diagram of Floating-Point Adder/Subtractor

The difference between the exponents is used to determine the
amount of right shifting necessary to align the smaller operand with the

larger operand.

12

Change
sign of ¥

Figure 11: FP Addition & Subtraction Flowchart

3.2.2.Floating-Point Multiplication

Floating-point multiplication has nearly as many far-reaching
applications as floating-point addition/subtraction. As a result, it is
important to implement an efficient multiplier design.

FP Operands I
Unpack
Add
XOR Exponents
Multiply
Significands

Adjust Exp |=s———— Normalize

Pack . m—

Product

Figure 12.Generic FP Multiplier Block Diagram

13

MULTIPLY

Add
Exponents

Subtract Bias

RETURN

Report
Underflow

Multiply
Significands

Normalize

Figure 13: Floating Point Multiplication Flowchart

14

4. ALU & FPU Synthesis Results

Each of the arithmetic blocks and floating-point described
previously were implemented in the Verilog hardware descriptive
language. Test benches were developed in ModelSim, and executed in
order to ensure that the functions performed as expected.

« I—
— Operands —

B4 jmain_tb/A 00110000011111001011101110101010
B4 fmain_tb/8 10110111011111100010000101011010

i I S |
— Opeode ——|

B4 ..opcode [0001010 'Tooo005 | Jmowo000 | J1soao00 | pooniin T Y S GREGEL

00110000011111001011101110101001 J011110004111111... [011110001111311. . [p011000)00111110.... 00

5t
ol
5t1
|S5t0
|S5t0
|5t
St

Eggg?bﬂﬂtff&é##&&é

Ll
~

15900 ns
s Cursor 1 639ns

Figure 14: A—1

B4 ..th/OUT 00110000011111001011101110101010
— Status

00110000011111001011101110101010
10110111011111100010000101011010
0001010

S5t1
00110000011111001011101110101010
00110000011111001011101110101010
00000000000000000000000000000000
00110000011111001011101110101010

10110111011111100010000101011010
ANATAAN

4
v
v
7
4
4
A
4
o

o

o

o
-

B

{2

B

B .

B .

S Cursor 1

Figure 15: A

15

B jmain_th/A 00110000011111001011101110101010 @
B fmain_th/8 10110111011111100010000101011010
— i —

|

- | I -]
— Operands — I
D 010 010 0 D 0 |
11 111

4 ..._th/Cin
— Gy ——
B ..opcode 0000110
— Result

B4 ..th/OUT 01111000111111101001101001010000 @

...utfAdd

..utfSub

wobjuutfa |00110000011111001011101110101010
bjuut/B |10110111011111100010000101011010
«..opcode |0000110

.uutfCin |5t

woutfOUT [01111000111111101001101001010000
«.U_ALU 101111000111111101001101001010000
U_FPU |00000000000000000000000000000000
wofalulfa |00110000011111001011101110101010
Jfalul/p |10110111011111100010000101011010

inncnda |nnon1an
MNow 1800 ns
Cursor 1 417 ns

R AN S

0 2
@[>

Figure 16: A— B

Ny)
— Operands — I
e /man_tb/A 00110000011111001011101110101010 .

B4 Jman_tb/8 10110111011111100010000101011010 [0

+thfOUT 01111000111111101001101001010001

— Status

St
St
5t
St
St
5t0
5t
St

00110000011111001011101110101010
10110111011111100010000101011010
0000110

5t1
01111000111111101001101001010001
01111000111111101001101001010001
00000000000000000000000000000000
00110000011111001011101110101010
10110111011111100010000101011010

nnnntan

4
4
‘
‘
‘
4
‘
4
‘
ot
ot
20
-
B
[2
[2
ot
20

1
~

1200 ns
T Cursor 1 564 ns

Figure 17: A— B + 1

16

...th/OUT | 00000000000000000000000000000000 |[FFH

— Status

S5t1
Ejel
St0
St1
S5t0
-, 5t0
...utfAdd St
...utfSub St

LeuutfMul |StO

Jbjuut/a |00110000011111001011101110101010
10110111011111100010000101011010
0010000

00110000011111001011101110101010
10110111011111100010000101011010
nnINNAR

EEEE?UEE&»»;#»&»»;

1300 ns.
d| Cursor 1 917 ns

Figure 18: A > B

— Operands —
ﬂ—* Jmain_tb/A 00110000011111001011101110101010
B Jmain_tb/f 10110111011111100010000101011010
— Cin

4 ..._tbfcin |0
— Opcode ——
B4 ..opcode 0010001
— Result

. 1/0UT | 100300500003000003000000000000 [

— Status
St1
S0
St
St1
S0
S0
St
St0
LouutfMul |5t
Lbfuut/a

4
Sy 38
S
0
4,
Sy 38
4
0
4

nd

[+ =3
o

2

00110000011111001011101110101010
10110111011111100010000101011010

nninona

d Cursor 1 1015 ns

Figure 19: A < B

17

10110111011111100010000101011010
10110111011111100010000101011010
0010010

10110111011111100010000101011010
10110111011111100010000101011010
onAnnn,

™
sRRRRRRLERE Loty

Cursor 1 1123 ns

Figure 20: A + B

...th/OUT | 00000000000000000000000000000000 DDI

— Status

10110111011111100010000101011010
10110111011111100010000101011010
0101001

10110111011111100010000101011010
10110111011111100010000101011010

nininnd

4
4
‘
4
-
W
‘
400
4
3
[E3
B
£ .
ot
[B
e
=3
mL .
-
L

1900 ns
] cursor 1 1313 ns

Figure 21: ~A&B

18

. Msas |

— Operands — I

@4 jmain_th/A 10110111011111100010000101011010 G0 1 1101311111 (0101011010

&4 jmain_th/f 10110111011111100010000101011010

I .
|

oo 000101 DOI0000 | pOI000L | JP0I00K0 | Joiodbol [pI0I00L | PI0OIAl [piigooy |

...thfOUT |01001000100000011101111010100101]I:II . 0 A

— Status ——

St1

sto

Stn

st

St1

5to

stn

st

sto
10110111011111100010000101011010 [30 {101101110111111000 100
10110111011111100010000101011010
0100001

sto
01001000100000011101111010100101
01001000100000011101111010100101
00000000000000000000000000000000
10110111011111100010000101011010
10110111011111100010000101011010

n1nnnns

b%tt&&&&&&&&&

7

1300 ns
Cursor 1 1224ns

Figure 22: ~(A&B)

B jmain_th/B 10110111011111100010000101011010
—Cin
4 .._thfan o
— Opeode —— I
B ..opcode 0110111 J00000T [J00I0010 | 10300001 | jpi0i00i [[pi0OLAT [J0iip000 | Joiipoii [Ipiidind Difoiii |
— Result |
— Status ——
ut/ALU [st1
sto
sto
sto
sto
st1
sto
sto
sto
00110000011111001011101110101010
10110111011111100010000101011010
0110111
sto
01011011101111110001000010101101 D 0 0 0101101101111, .. D
01011011101111110001000010101101 D 0 D 0 0 [010110117011111...]0
00000000000000000000000000000000

00110000011111001011101110101010
10110111011111100010000101011010

RERLERE]

4
4
4
4
4
.
.
=
=
[+ =3
[+ =3
[+ =3
>
[+
[+ 5
L+
[+
[+ E3

1900 ns
g Cursor 1 1325 ns

Figure 23: ror B

19

S S ——

ﬂ—‘ Jmain_th/A 00110000011111001011101110101010

@ jmain_tb/8 10110111011111100010000101011010
0010.... 0010001 J0010010 o 1 Jo101001 0100111 J0110 0110011 J0110100 110111
...th/OUT [01100000111110010111011101010100 - 0 0 00010 0110 0 0 00... J010110111011111...

— Status ——

L.utfALu

L utfFRU

. /ARTTH

...utfCMP

LUtfLOG

...utfAdd

wutfSub

LouutMul

.bjuut/a |00110000011111001011101110101010

...bjuut/B [10110111011111100010000101011010
0110000
st
01100000111110010111011101010100 [010710111011111... |
01100000111110010111011101010100 D 0 [D11000] [010110111011111... |
00000000000000000000000000000000
00110000011111001011101110101010

..falulb |10110111011111100010000101011010
nnends 0110000

1900 ns.

Palel Cursor 1 1537 ns

Figure 24: shl A

20

— Operands —
B4 jmain_th/A
B4 fmain_tb/B

Mow
ISPl Cursor 1

01000000111111000000000000000080" (000000000, .. 0100

00111110010000000000000000000000

St
|St1
St
Eul
St
ul

00111110010000000000000000000000
1000000
St

01000000111111000000000000000000
00111110010000000000000000000000
1

nnnnnn

1300 ns

157 ns

Step 1

Step 2

Step 3

Step 4

Step b

Step 6

Step 7

pooos — fooowm | ootom1 Joowonos Joomooot Joowoots pwonoot Joios
L\ 1 1]

Figure 25: FPU Adder

Floating-point numbers

[o]| 10000001 | 111 1100 0000 0000 0000 0000 |
[o] 01111100 | 100 0000 0OOD 0000 0000 0000 |
Exponent Fraction
110000001 | | 111 1100 0000 0000 0000 0000 |
[01111100]| | 100 0000 0000 0000 0000 0000 |
[10000001| [1.111 1100 0000 0000 0000 0000 |
[01111100] [1.100 0000 0000 000 0000 0000 |
[10000001| [1.111 1100 0000 0000 0000 0000 |
—[o1111100| [1.100 0000 0000 000D 0000 0000 |

101 (shift amount)

110000001 | [1.111 1100 0000 0000 0000 0000 |
[10000001 | [0.000 0110 0000 0000 0000 0000 | 00000
(10000001 | [1.111 1100 0000 0000 0000 0000 |
[10000001 | . [0.000 0110 0000 0000 0000 0000 |

10.000 0010 0000 0000 0000 000D
10000001 | 10.000 0010 D000 0000 0000 0000 >> 1

1

[10000010| [1.000 0001 0000 0000 0000 0000

(Mo reunding necessary)

Step8[0 | 10000010

| 000 0001 0000 0000 0000 0000

Figure 26: Floating-point Addition

21

B4 /main_th/A 01000001000111000000000000000000 |
B /main_tb/B 00111111000100000000000000000000 |
— Cin

S| | | |

L th/OUT | 01000001000100110000000000000000 [T

— Status.
St

S0
01000001000111000000000000000000
00111111000100000000000000000000
1010000
LoUutfCin |St0
...utfOUT |01000001000100110000000000000000
«U_ALU |00000000000000000000000000000000
...U_FPU |01000001000100110000000000000000
wofalulfa [01000001000111000000000000000000
...faluib |00111111000100000000000000000000
_—
LEe Now 1900ns |-
S cursor 1 242 ns

-4
4
-+
4
-+
W
-+
40
4
3

B

[B

o4

[3

[+ =5

il
S

Figure 27: FPU Subtraction

Floating-poinl numbers

|] 10000010 001, 1100 D000 D000 D000 D00 |

]1 01111110 0L, DD CDRDRD D000 D000 D000 |
EI_P'UWT'I Fraction

[10000010] [©O111000000000000000000 |

Step 1 [OL111110 | | 001 0000 0000 D000 0000 0000 |

|1-:-:-:-:-:1-:- | | 1001 1 100 T OO0 DO D00 |

e . [oi111110 | [1.001 00000000 D0DDOODOONN0 |

TOOOG0In | 1,001 1100 QDO GO0 D000 D000 |

T
- [otitn10 | [100100000000000000000000 |
T smml e ol gyt gl
10000010 | (~T1001 1100 0000 000000000000
o U |
- [10000010 | [0.000 10010000000000000000 DOOOK
To000010 1001 1100 0000 G000 D000 0000
st 10000010 |~ [9000 1001 DODD 00000000 DDDD
1.001 0011 0000 0000 0000 0000

Step ¢ 10000010

Slen 'lIl " -."\'-‘!I"_;"I'\- ERET

Step B |-'_'| | 10000010 DL 1L 1 (0NN (N0 A0 a0

Figure 28: Floating-point Subtraction

22

e —
B4 [main_tb/A 10111110100110011001100110011010
B4 /main_th/6 01000011111110100010000000000000
— cin

4 .._thfcin |0
— opode —— |
B4 ..opcode 1100000
— Result
-+ 9-..o/0UT | 100001 1000101:00001001 10011001 i@
— Status —————————
<to
st1

10111110100110011001100110011010
01000011111110100010000000000000
1100000

sto
11000011000101100001001100110011
00000000000000000000000000000000
11000011000101100001001100110011
10111110100110011001100110011010
01000011111110100010000000000000
- RRTaTululata}

CHe 1900 ns
L] Cursor 1 338 ns

r
r
Fl
rl
r
o I
rl
r
r
[
B
B .
ir
[+ RN
}l
[
[
B

Figure 28: FPU Multiplication

[1] ouuim | 001 1001 1001 1001 1001 1010 |

[o]| 10000111 | 111 1010 0010 0000 0000 0000 |
Exponent Fraction

[01111101 | | 001 1001 1001 1001 1001 1010 |

[10000111 | | 111 1010 0010 0000 0000 0000 |

[01111101 | X | 1.001 1001 1001 1001 1001 1010 |
[1000011 | | 1.111 1010 0010 0000 0OCO 0000 |
PRODUCT 1.00101 10000100 1100 1880 1110 0010 11100100
1
| 10000110 | i_ T 1.00101100001001100110011]
O 5
[1] 10000110 | 001 0110 0001 0011 0011 0011 |

Figure 30: Floating-point multiplicat

23

5. Conclusion

While working on this project we sought to gain practical experience
and knowledge in the field of computer engineering and computer
organization. Tools such as ModelSim Simulator, used in this project offer
a unique way of design testing and verification by enabling signal.

REFERENCES

1) Stallings, William, Computer Organization & Architecture: Designing
for Performance, 7" ed. Upper Saddle River, NJ: Prentice-Hall, 2006.

2) Computer Architecture ALU Design: Division and Floating Point,
http://www.ann.ece.ufl.edu/courses/eel4713 12spr/slides/Lec8-

division.pdf

24

25

