
Design and Implementation of Single Precision
Floating-point Arithmetic Logic Unit for RISC

Processor on FPGA

 1st Noor Alhuda Saad Adela 2nd Amani Najeeb Ben Yousuf 3rd Mohamed Muftah Eljhani

DepartmentDepartment of Computer Engineering Department of Comof Computer Engineering puter Engineering

UUniversity of Tripoli Unniversity of Tripoli iversity of Tripoli

 Tripoli, Libya Tripoli, Libya Tripoli, Libya
 n.adela@uot.edu.ly a.yousuf@uot.edu.ly m.eljhani@uot.edu.ly

Abstract— The main purpose of conducting this research is to

design and implement a single precision floating-point arithmetic

logic unit (ALU) that considered as a part of the math coprocessor.

The main advantage of floating-point representation is that it can

support more values than fixed-point and integer representations.

Summation, Subtraction, multiplication and division are

arithmetic functions in these calculations. In this floating-point

unit, input must be provided in IEEE-754 format, which is 32

single precision floating point values. The application of This

arithmetic unit is located in the math coprocessor. Commonly

referred to as reduced instruction set computation (RISC)

processor. In this processor, for a signal processing, a value with

high accuracy is required and as it is an iterative process, the

calculation should be as fast as possible. A fixed-point and integer

central processing unit (CPU) can't meet the requirements. The

floating-point representation can calculate very large or very

small process quickly and accurately. The system designed,

verified and implemented with Verilog hardware description

language using Intel Altera software tools.

Keywords—: Floating point, IEEE-754, ALU, FPGA Design,

Verilog Hardware Description Language

I. INTRODUCTION

RISC is a microprocessor design approach that emphasizes
simplicity and ease of use. While it may not be as efficient for
complex calculations that require a single, complicated
instruction to execute, it excels at tasks that can be broken down
into multiple simple operations. This makes RISC processors
ideal for use in pipelining applications[1] [2]. With the
increasing complexity of devices, integrated microprocessors
must provide high performance, while still maintaining low
power consumption and a small form factor. This has become
essential for daily activities, as computers and mobile phones
have become indispensable tools. However, with the growing
complexity of these products, there is a greater need for
processing power while still maintaining battery life. Recent
trends have shown that RISC processors have overtaken CISC
processor architecture. The advantage of RISC is that it can
execute instructions quickly due to the simplicity of the
instructions [3]. A RISC microprocessor is characterized by its
limited number of instructions and ability to perform millions of
instructions per second. This article discusses a CPLD which is

based on a 32-bit general-purpose four-stage pipeline processor
equipped with a floating-point unit. The processor includes a
comprehensive collection of instructions, programs, and data
memory, general-purpose registers, and an arithmetic logic unit
that can perform single-precision floating-point arithmetic
calculations [4]. Designing high-performance arithmetic
hardware has always been a sought-after challenge because
microprocessors and signal processors are widely used. The
Arithmetic and Logic Unit, which controls the speed of
processor operations, is a crucial component of microprocessors.
Simple arithmetic calculations are performed by standalone
circuitry on modern CPUs. Adding on-chip memory or cache to
fast arithmetic hardware allows processors to reduce latency
associated with data access from main memory, resulting in a
significant boost in performance [5]. CPUs and GPUs nowadays
come equipped with processors that can accommodate multiple
and robust ALUs. Typically, the ALU is responsible for
performing various mathematical, logical, and decision-making
computations as part of the final processing stage by the
processor. Arithmetic operations such as addition, subtraction,
and incrementing, as well as logic operations like AND, OR,
XOR, and NOT, are all executed by the ALU[6]Floating point
operations are widely utilized in various sectors due to their wide
dynamic range, simple operation rules, and high precision.
There is an increasing need for high-speed hardware floating
point arithmetic units to fulfill the demand for high-speed data
signal processing and scientific procedures. Additionally, the
use of floating-point arithmetic operations is increasing in
commercial, financial, and internet-based applications [7]. The
floating point representation is a widely used method to
represent real numbers in scientific notation. It uses a sliding
window mechanism to adjust the precision according to the
number's scale, making it capable of representing extremely
large or small numbers, ranging from 1,000,000,000,000 to
0.000000000000001. To implement floating point arithmetic on
reconfigurable hardware, such as FPGAs, is challenging due to
the complex algorithms. Therefore, we aim to construct a
floating-point arithmetic unit or DSP processor for high-
accuracy scientific tasks using Verilog HDL and Altera Quartus
II. The module includes arithmetic operations such as addition,
subtraction, multiplication, and division [8].

2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and
Computer Engineering (MI-STA), Benghazi, Libya 21-23 May 2023.

979-8-3503-1989-7/23/$31.00 ©2023 IEEE
130

20
23

 IE
EE

 3
rd

 In
te

rn
at

io
na

l M
ag

hr
eb

 M
ee

tin
g

of
 th

e
C

on
fe

re
nc

e
on

 S
ci

en
ce

s a
nd

 T
ec

hn
iq

ue
s o

f A
ut

om
at

ic
 C

on
tro

l a
nd

 C
om

pu
te

r E
ng

in
ee

rin
g

(M
I-

ST
A

) |
 9

79
-8

-3
50

3-
19

89
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

M
I-

ST
A

57
57

5.
20

23
.1

01
69

62
3

Authorized licensed use limited to: International Islamic University Malaysia. Downloaded on July 11,2023 at 23:09:29 UTC from IEEE Xplore. Restrictions apply.

II. METHODOLOGY

The focus of this paper is on planned to follow a Bottom to
up approach while designing this ALU. Firstly, we implemented
simple logic blocks such as Comparator, Adder, Shifter, etc. in
Verilog. Then after verifying their performance in the ModelSim
simulator, with respect to generated signal patterns as inputs, we
implemented the whole design.

A. Design Block

The design comprises of 5 basic sections as shown in “Fig.
1”.

1. Opcode Decoder

2. Arithmetic Block

3. Logical Block

4. Comparator Block

5. Shifter Block

 Fig. 1. ALU Block Diagram

B. Opcode Decoder

 The proposed design consists of a main opcode decoder
that activates the corresponding function block based on the
instruction opcode executed by the processor and passed to the
ALU block. The corresponding output lines will provide the
activation currents of the respective function blocks. The
decoder is 6 to 43 bits, it takes a 6-bit opcode as input and it
turn activates the corresponding function block to perform the
desired operation.

C. Selected Instructions

 The ALU that was designed requires a clock signal, two 32-
bit operands, and a 6-bit opcode as its inputs. The instructions
that have been implemented in the ALU can be found in
TABLE I.

“Table. I”. show the complete list of the implemented
instructions, and “Table. II”. show the Floating-Point: Special
Cases.

.

 TABLE. I. Complete List of The Implemented Instructions

By combining these operations, it is possible to implement any
logic operation.

D. Arthimetic Block

 This block is used to perform arithmetic operations such as
addition, subtraction and multiplication. The accumulator and
auxiliary register b provide input to this block, as shown in
“Fig. 2”.

 Fig. 2. Pipelined RISC Architecture

1. Integer Addition/Subtraction

 Fast addition is crucial in various digital systems, and
it's important to note that subtraction and addition are
essentially the same operation. The only difference is that in
subtraction, the second operand's sign is reversed. With this
understanding, it's easy to execute integer subtraction using any
integer adder. To make the adder compatible with both
operations, slight modifications are necessary to perform
addition and subtraction of integers, a logic must be set up. If
subtraction is selected, the B operand needs to undergo a two's
complement conversion, while for addition, B should remain
the same. There are two ways to achieve this: using an inverter
and a per-bit multiplexer or by using an XOR gate. In the XOR
gate method, one bit is associated with control, and the other is
linked with the corresponding bit of B.

Identify applicable funding agency here. If none, delete this text box.

131
Authorized licensed use limited to: International Islamic University Malaysia. Downloaded on July 11,2023 at 23:09:29 UTC from IEEE Xplore. Restrictions apply.

2. Integer Multiplication

 Multiplication is a commonly used operation that has
various applications, including scientific calculations and
signal processing. It is also essential for performing division.
Integer coefficients can be implemented through different
methods, with typical implementations being change and add.
When performing multiplication, both registers are utilized to
produce a 64-bit output. as in “Fig.3”

Fig. 3. Shift and Addition Multiplier Circuit

E. Comparator Block

 This block includes a combinatorial HDL code that
performs bit matching and comparison. The corresponding
outputs can be used to derive instructions based on the
comparison. Likewise, numerical greater or less than indices
can be used on the respective operands.

F. Logical Block

 This block contains fundamental logic gates like AND,
OR, NOT, and XOR responsible for performing logic
operations on data operands. The outputs are stored in their
respective latches. These logic gates perform standard logical
operations on bit operands. If both Ai and Bi are 1, the AND
operation produces 1 in the i output bit. If either Ai or Bi is 1
but not both, the OR operation produces 1 in the i output bit.
The NOR operation is the opposite of the OR operation, with a
0 inserted in the bit position if the conditions are not met. The
ENV operation reverses the bits of A and B.

G. Shifter/ Rotat Block

 This block contains simple shifters like the barrel shifter
and end cap turning mechanisms that can be used to shift data
to the right. Two methods are used for this shift - arithmetic and
logical. In arithmetic shifting, the operation is expanded as it is

shifted by adding the shift symbol. In logical shifting, the empty
bit positions in the shift are filled with zeros like in “Fig.4” [9].

Fig. 4. 32 bit scaled shifter block

H. Floating Point Unit

 Floating point units (FPUs) are specialized hardware
components within the CPU that are responsible for
processing decimal operations. FPUs perform basic arithmetic
operations such as addition, subtraction, multiplication, and
division. However, unlike the Arithmetic Logic Unit (ALU)
which handles integer values represented in binary numbers,
the FPU handles both integer and fractional parts of numbers.
Since bit vectors cannot distinguish between integer and
fractional parts of numbers, the operands must be separated
into the sign, exponent, and mantissa parts of the number. This
allows for more accurate decimal calculation within the CPU.

I. IEEE 754 Standred

 The standard includes support for both 32-bit single-
precision and 64-bit double precision numbers. Double
precision has a wider range and higher precision than single
precision due to its 11 bits of exponent and 52 bits of fraction,
compared to 8 bits of exponent and 23 bits of fraction for single
precision shown in “Fig 5”. Since this article only focuses on
32-bit inputs, we will only explore the single-precision format,
which operates in the same way as double precision as shown
in TABLE. II.

132
Authorized licensed use limited to: International Islamic University Malaysia. Downloaded on July 11,2023 at 23:09:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Single-Precision IEEE 754 Format

The standard accommodates 32-bit single-precision numbers
and 64-bit double precision numbers. It is noteworthy that the
double precision category offers a broader range, considering
that it has 11 bits of exponent as opposed to the 8 bits of single-
precision. Furthermore, double precision provides higher
precision, thanks to its 52 bits of fraction in comparison to the
23 bits available in single-precision as shown in “Fig 5”, and
TABLE. II.

TABLE. II. Floating-Point: Special Cases

Number Sign
Exponent

(e)
Fraction (f)

0 X 00000000 00000000000000000000000

∞ 0 11111111 00000000000000000000000

�∞ 1 11111111 00000000000000000000000

NAN X 11111111 nonzero

J. FPU Instruction

 The operations supported by the floating-point unit include
addition, subtraction, and multiplication as shows in TABLE.

VI.

TABLE. VI. FPU Operations

Operation OP Code

Addition 00

Subtraction 01

Multiplication 10

1. Floating-Point Adder/Subtractor

 The most commonly employed floating-point operation
is FP addition/subtraction, analogous to the widespread use of
integer addition/subtraction in the ALU.

 Fig. 6. Block Diagram of Floating-Point Adder/Subtractor

 In order to align the smaller operand with the larger
operand, one needs to shift the smaller operand to the right by
an amount determined by the difference between their
exponents as shows in “Fig. 6”.

2. Floating-Point Multiplication

Efficient multiplication design is crucial as floating-point
multiplication is widely used in various applications,
comparable to floating-point addition/subtraction as shows in
“Fig. 7”.

 Fig. 7. Generic FP Multiplier Block Diagram

133
Authorized licensed use limited to: International Islamic University Malaysia. Downloaded on July 11,2023 at 23:09:29 UTC from IEEE Xplore. Restrictions apply.

K. Hardware Test Environment

 Our team has developed a comprehensive EDA (Electronic
Design Automation) printed circuit board system to enable
efficient and thorough testing and validation of the floating
point ALU in hardware. This system is intended to facilitate the
use of more advanced FPGA development tools as shows in
“Fig.8”.

Fig.8. PCB with Cyclone FPGA

III. SIMULATION AND RESULTS

 To confirm the proper functioning of each arithmetic block
and floating-point implementation, they were programmed
using Verilog hardware descriptive language. In ModelSim, test
benches were created and executed to validate their performance
as shows in “Fig.9”, “Fig.10”, and “Fig.11”.

Fig.9. FPU Adder

Fig.10 .FPU Subtractor

Fig.11. FPU Multiplier

IV. CONCLUSION

 The goal of this project is to create an architecture for an
arithmetic logic unit and floating-point unit that can handle all
arithmetic and logical operations for a RISC processor. The
design should be flexible enough to scale up to 32 bits. The
project uses Verilog language and utilizes software tools like
ModelSim 10.1 and Quartus II 12.1 for simulation and testing.
The techniques utilized in this project provide a distinct
approach to design, test, and verify the system. The design
was done using electronic design automation tools.

REFERENCES

[1] C. Hamacher, Z. Vranesic and S. Zaky, Computer Organizationn
fifth edition, 2002.

[2] Mohamed M. Eljhani, Veton Z. Kepuska, Reduced Instruction
Set Computer Design on FPGA. 2021 IEEE 1st International
Maghreb Meeting of the Conference on Sciences and Techniques
of Automatic Control and Computer Engineering MI-STA, 25-27
May 2021, Tripoli-Libya

[3] J. Poornima, G. V. Ganesh, M. Jyothi, M. Shanti and A. Jhansi,
"Design and implementation of pipelined 32-bit Advanced RISC
processor for various D.S.P Application," Proceedings of

International Journal of Computer Science And Information

Technology, June 2012.

[4] R. P. Colwell, C. Y. Hitchcock, E. D. Jensen, H. M. Brinkley
Sprung and C. P. Kollar, "Instruction sets and beyond: computers,
complexity, and controversy,," IEEE Computer, 1986.

[5] A. Athihrii, M. Stephen and S. Kumar, "Design and
implementation of 32-bit ALU using verilog," 02 June 2016.

[6] D. Malik and R. S. Rathore, "32-bit Arithmetic Logical Unit
(ALU) using VHDL," vol. 1, no. 1, 26 NOV 2013.

[7] R. Cherian, N. Thomas and Y. Shyju, "Implementation of Binary
to Floating Point Converter using HDL," no. 461-64, 2013.

[8] R. Payal, "Simulation and Synthesis Model for the Addition of
Single Precision Floating Point Numbers Using Verilog," vol. 02,
no. 09, Sep 2013.

[9] K. Garg, M. Garg, S. Mehta and S. Vashist, "n-Bit Arithmetic &
Logical Unit (ALU)," 2015.

134
Authorized licensed use limited to: International Islamic University Malaysia. Downloaded on July 11,2023 at 23:09:29 UTC from IEEE Xplore. Restrictions apply.

