
Design and Implementation of Five Stages Piplined
RISC Processor on FPGA

 1st 2Amani Najeeb Ben Yousuf nd 3Dania Khaled Alamen rd Mohamed Muftah Eljhani

Department oDepartment of Computer Engineering Department of Comf Computer Engineering puter Engineering

UUniversity of Tripoli Unniversity of Tripoli iversity of Tripoli

Tripoli, LibTripoli, Libya Tripoli, Libyaya
 a.yousuf@uot.edu.ly d.alamen@uot.edu.ly m.eljhani@uot.edu.ly

Abstract— This research focuses on designing and implementing a

processor with a five-stage pipeline for educational purposes. The

proposed processor can execute five 16-bit instructions

simultaneously and is designed and simulated using Verilog HDL.

It is implemented on a Cyclone IV FPGA on the DE2i-150 design

board. The processor is suitable for applications that require high

processing speed and low power consumption, including mobile

computers, consumer electronics, security systems, and more. This

RISC-based processor has simple instructions that consume low

power and execute quickly.

Keywords— The areas of expertise include designing processors

using Pipelined RISC architecture, designing systems on

programmable chips, and creating FPGA designs using the Verilog

hardware description language.

I. INTRUDUCTION

The evolution of computer technology has witnessed the
emergence of various architectures since the advent of first-
generation computers in the 1940s. Over time, efforts have been
made to enhance computer performance. One popular technique
used in current CPU designs, microprocessors, and
microcontrollers is instruction pipelining, which can
significantly increase the number of instructions executed in a
specific time interval [1][2]. Our design philosophy for the
architecture was based on the RISC principle of favoring a
smaller and simpler set of instructions that could be executed in
the same amount of time. This led us to maintain a highly
simplified instruction set [3]. Pipelining is a fundamental aspect
of RISC processors that mimics the workflow of a
manufacturing assembly line. By processing different stages of
the instruction simultaneously, the processor can execute more
instructions in a shorter span of time [4]. RISC processors are
preferred over CISC processors when it comes to implementing
pipelining. This is because traditional instruction cycles of CISC
processors tend to waste CPU resources by including other
services, such as reading or writing to memory or input/output
devices, which leave the CPU idle. To improve instruction
latency and program throughput, pipelining has proven to be
highly efficient. As computer systems continue to evolve,
technological advances such as speed up circuits and improved
organization, including the addition of instruction pipelines to
processors, are utilized to achieve higher performance [5][6][7].
The pipeline processor operates by initially placing the first
instruction in the decode stage. Subsequently, the second

instruction is fetched while the first instruction is in the execute
stage. Once the first instruction completes execution after three
cycles, the second instruction moves to the decode stage and the
third instruction is fetched. Thereafter, instructions are
completed every cycle

Non-pipelined systems involve an instruction cycle that

requires three separate stages before moving on to the next
instruction, and it is not always possible to begin executing the
next set of instructions on each clock cycle. This can lead to
hazards, which are complications that can arise during
instruction execution. Common types of hazards include
structural, data, and control hazards [8]. In 1997, an educational
software called WinDLX was developed as a pipeline simulator
for the DLX processor. It was created using C++ and designed
for MS Windows (16-bit) platforms. The simulator's model is
primarily based on the DLX architecture proposed by Hennessy
Patterson, focusing on the architectural aspect. WinDLX was
developed to assist in teaching the concept of instruction
pipeline to students [9].

Another approach to pipeline simulation is using the

ModelSim simulator and the Xilinx ISE tools software, as
described in [2]. This method involves dividing the pipeline
processing into distinct phases (fetch, decode, execute, and
store) using Verilog HDL, and designing each of them
accordingly. A detailed step-by-step scheme is provided, which
helps users better grasp the underlying concepts of the
processor. However, utilizing these tools requires some
expertise in simulation techniques. Another related work
involves using Java programming for pipeline simulation, with
a focus on student engagement and interactivity [10]. The RISC-
16 processor was selected for its simplicity, comprehensiveness,
and suitability for educational use. The team's system allowed
users to create their own assembly language programs and
visually visualize the processor's internal dynamic behavior.
Additionally, the team's design has the potential to serve as a
web-based simulation model that can explore the state space
defined by the integrated parallel model and simulator [8][11].
The researchers demonstrated that the simulator has the
capability to function as a calculator and accurately calculate
acceleration based on given input parameters. Furthermore, by
utilizing the unified parallel model and simulator, users are able
to assess the potential for parallel speedup continuity across
various computer architectures with hardware support at

2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and
Computer Engineering (MI-STA), Benghazi, Libya 21-23 May 2023.

979-8-3503-1989-7/23/$31.00 ©2023 IEEE
300

20
23

 IE
EE

 3
rd

 In
te

rn
at

io
na

l M
ag

hr
eb

 M
ee

tin
g

of
 th

e
C

on
fe

re
nc

e
on

 S
ci

en
ce

s a
nd

 T
ec

hn
iq

ue
s o

f A
ut

om
at

ic
 C

on
tro

l a
nd

 C
om

pu
te

r E
ng

in
ee

rin
g

(M
I-

ST
A

) |
 9

79
-8

-3
50

3-
19

89
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

M
I-

ST
A

57
57

5.
20

23
.1

01
69

81
8

Authorized licensed use limited to: International Islamic University Malaysia. Downloaded on July 11,2023 at 23:06:59 UTC from IEEE Xplore. Restrictions apply.

multiple levels of parallelism. The simulation tools enable the
customization of architecture and network configurations and
the ability to run diverse workloads with variable configurations.
Our objective is to develop a pipelined RISC processor that
contains five stages and supporting eight instructions, with a
focus on achieving high performance. Subsequently, we aim to
implement our design on DE2i-150 FPGA board.

II. METHODOLOGY

 The primary objective of this investigation is to present a
pipeline design with five stages to execute a RISC 16-bit
instruction set processor. The system can be divided into
different stages, each of which has a specific function, such as
Instruction Fetch (IF), Instruction Decode (ID), Instruction
Execute (EX), Memory Access (MEM), and Write Back
(WB).

A. Top Module View

 The Pipelined CPU architecture proposed in “Fig. 1”
comprises of six subordinate modules.

 Fig. 1. System Top View

B. System Sub-Modules

• Processor Main Module: Arithmetic processing is
carried out using the instruction retrieved from the
instruction memory, and data is either written to or read
from the data memory.
• Instruction Memory Module: Provide instructions for
the processor module, so it can find the memory address
of the instruction through the value in the instruction
register, thereby reading the instruction.
• Data Memory Module: Processor reads data of writes
data.
• Clock Generator Module: An electronic oscillator
that is used to synchronize by producing a clock signal.
• Controller Module: It is used to control the processor
execution by the clock.
• Seven-Segment Interface Module: An electronic
display device that presents decimal numerals and serves
as a simpler option to dot matrix displays is called a
numeric display.

C. Instruction Set Architecture

The pipelined RISC processor’s Instructions are divided

into four categories:
1. Arithmetic and logical instructions that carry out

arithmetic and logical operations.
2. Data movement instruction (Load and Store

Instructions) are used to move data between the
accumulator, general registers, and memory. These
instructions facilitate the transfer of data within the
system.

3. Jump instruction is used to alter the sequence in which
instructions are executed

4. Miscellaneous instruction.

“Table. I”. show the pipelined instruction format, and
“Table. II”. show the instruction encoding.

 TABLE. I. Pipelined Instruction Format

 TABLE. II. 16-bit Instruction Set Encoding

Instr. Oper

and1

Oper

and2

Opera

nd3

Opcode Operation

Arithmetic and logical instructions

ADD Rs Rt Rd #1000 �� ← �� � ��

SUB Rs Rt Rd #1010 �� ← �� � ��

AND Rs Rt Rd #1101 �� ← �� 	
� ��

XOR Rs Rt Rd #1111 �� ← �� ��
 ��

Data movement instructions

LOAD Rs Rt value3 #0010 �����

← ���� � �	���3�

STORE Rs Rt value3 #0011 ���� � �	���3� ← ��

Jump instruction

JUMP value

2

value3 #0110 ���� �� ��	���2, �	���3�

Miscellaneous

HALT #0001 ℎ	��

301
Authorized licensed use limited to: International Islamic University Malaysia. Downloaded on July 11,2023 at 23:06:59 UTC from IEEE Xplore. Restrictions apply.

D. Five Stages Pipelined Procedure

Besides the instruction set, the most important part in CPU
design is the implementation of the system architecture as shown
in the block diagram of the RISC. The pipelined architecture
implementation of the processor relied on “Fig. 2”. “Fig. 3”
shows the instruction execution procedure, starting from
fetching the instruction, decoding, execution, read/write
memory, write back, and hazard detection.

Fig. 2. Pipelined RISC Architecture

 Fig. 3. Pipelined Instruction Procedure

E. RISC Control Unit

 The CPU control unit is naturally based on the finite state
machine. There are only two main states: idle and execute. In
the idle state, the CPU can enter the execute state only if enable

and start is enabled at the same time, otherwise the CPU will
stay in the idle state.
 The execute state will go to the idle state as shown in “Fig.
4”, if enable is zero or it is in the halt instruction, otherwise it
will stay in the execution state. The processor controller is used
to control the running time of our processor. It consists of a
clock, reset and trap as input. The trap is work as the clock of
the processor controller, and the output of the model clk-ctrl-
processor gives a specific synchronization to the system.

 Fig. 4. Control State Diagram

F. Instruction Fetch

The IF stage fetches the program instructions one by one.
pointing the memory by program counter (PC) value. The
program counter keeps track of fetched instructions. Instructions
are fetched from memory every clock cycle.

G. Instruction Decode

 This unit reads commands from the command register and
encode the operands by the operation. A 16-bit instruction is
divided into several stages as mentioned above.

H. Instruction Execute

 During the EX-stage, the CPU carries out arithmetic logic
unit (ALU) operations as instructed by the decoder and based
on the values stored in the flag register.

I. Arithmetic Logic Unit

 An ALU, or Arithmetic Logic Unit, is a digital circuit that
combines different bits of binary numbers to perform
arithmetic and bitwise operations on integers in computing.

 TABLE. III. Arithmetic Logic Unit Interface

Signal name

[size in bits]

 Description

regB [16] Input data “regB”, from Reg [Rs] in

most cases

regA [16] Input data “regA”, from Reg [Rt] or

the immediate in most cases.

ALUout [16] Output data

Opcode [4] Generated by the control unit when

the instruction currently in the ALU

was in Decode

Identify applicable funding agency here. If none, delete this text box.

302
Authorized licensed use limited to: International Islamic University Malaysia. Downloaded on July 11,2023 at 23:06:59 UTC from IEEE Xplore. Restrictions apply.

J. Memory Access

 When reading or writing data from a data memory, this
stage will be used. This stage is only used for loading Memory
instructions to read and write data memory. ALU results can be
stored directly in data memory. This unit interfaces with the
data memory. Memory is the storage used to store runtime
instructions (program) and data. In order to distinguish it from
the long-term storage of data and programs in a computer,
memory that sometimes-called main memory. The Instruction
memory stores all the prefetched instructions. It’s a
combination logic, according to the address read, outputs of an
instruction. It does need one read port, which will have 16-bit
width (fetch one instruction at a time). The instruction memory
can model to having arbitrarily fast asynchronous reads.

TABLE. VI. Instruction Memory Interface

Signal Name [size in bits] Description

Address [16] Current instruction to

fetch

Read Data [16] Current instruction fetched

Three ports are required to write data to memory, read data from
memory, and address the memory. Data input/output requires
16 bits to match the size of the register. There are two other
ports, one for enabling or disabling writes and the other for the
clock signal.

A. Reading data is a combinational logic, which directly
reads the output of an instruction according to the
address.

B. Writing to Data is sequential logic, and may be written
once per cycle. To write according to the we-in signal,
then the clock frequency of the Memory needs to be
faster than the CPU clock.

TABLE. V. Data Memory Interface

Signal name [size in

bits]

 Description

dataM_INP [16] Data in Mem[address]. Output

is still in the M stage if read

asynchronously.

dataM_addr [8] Address to perform the next

read/write.

dataM_out [16] Data to write to Mem[address].

we_in Set high if the unit should

perform a write on the next

clock edge.

Div_clk Clock signal to synchronize

writes.

K. Write Back

 Write back writes the calculation result to the value of the
instruction. Except for the jump instruction and the load and
store instructions, the first operand (register) is written back.
and just keep the register unchanged in other cases.

L. Hazard Conflicts

 In pipeline processing, due to the dependencies of various
stages and the competition of hardware resources, the
operation cannot be performed at the same time. The cause of
pipeline failure is called a hazard. Hazard is divided into three
types [11]:

- Structural hazard
- Data hazard
- Control hazard

M. Clock Generator

 To enable us to observe the CPU's intermediate actions,
we employed a clock divider to reduce the built-in 50MHz
clock frequency used for our system clock.

III. SIMULATION AND RESULTS

 The system was designed and simulated individually, then
instantiated, and verified as top-level module. After the system
functionality was verified, “Fig. 5”, shows the assembly
program and used to verify the system, “Fig. 6”, show the
input/output simulation result. The resulting simulation
waveforms shows that the system is performing all instructions
used to test the system. In “Fig. 8”, Intel Altera Quartus II
software tool used to place and route design into FPGA board,
and generate the FPGA fitter report that shown in “Fig. 7”.

 Fig. 5. Assembly Code

303
Authorized licensed use limited to: International Islamic University Malaysia. Downloaded on July 11,2023 at 23:06:59 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Simulation Waveforms

 Fig. 7. FPGA Fitter Summary

Fig. 8 Pipelined RISC on FPGA Board Fitter

IV. CONCLUSION

 The aim of this endeavor is to create an educational 5-
stage pipelined processor, which involves its design,
validation, and implementation. To determine the processor's
efficiency and speed, a series of customized arithmetic, logic,
data movement, and branch instructions were employed for
analysis. Verilog HDL was utilized to design and simulate the

system, which was then mapped to the Cyclone IV FPGA.
While executing the pipelined processor, data hazard issues
emerged, which were resolved by integrating load utilization
modules and data transfer.

REFRENCES

[1] Rakesh MR, Ajeya B, Mohan AR. Novel architecture of 17-bit
address RISC CPU with pipelining technique using Xilinx in VLSI
Technology. International Journal of Engineering Research and
Applications.2014; 4(5):116-121.

[2] Rakesh MR. Design and simulation of four stage pipelining
architecture using the Verilog. International Journal of Science and
Research. 2014; 3(3):108-12.

[3] Mohamed M. Eljhani, Veton Z. Kepuska, Reduced Instruction Set
Computer Design on FPGA. 2021 IEEE 1st International Maghreb
Meeting of the Conference on Sciences and Techniques of
Automatic Control and Computer Engineering MI-STA, 25-27
May 2021, Tripoli-Libya

[4] Rana S, Mehra R. Design &simulation of RISC processor using
hyper pipelining technique. IOSR Journal of Mechanical and Civil
Engineering (IOSR-JMCE). 2013;9(2):49-57.

[5] Trivedi P. Design &analysis of 16-bit RISC processor using low
power pipelining. 2015 International Conference on Computing,
Communication & Automation (ICCCA); 2015:1294-7.

[6] Finlayson I, Uh GR, Whalley DB, Tyson G. An overview of static
pipelining. IEEE Computer Architecture Letters. 2012; 11(1):17-
20.

[7] Cheah HY, Fahmy SA, Kapre N. Analysis and optimization of a
deeply pipelined FPGA soft processor. 2014 International
Conference on Field-Programmable Technology (FPT); 2015. p.
235-8.

[8] Hoganson KE. High-performance computer architecture and
algorithm simulator Journal on Educational Resources in
Computing. 2002; 2(1):131-48.

[9] Grunbacher H. Teaching computer architecture/organisation using
simulators. 28th Annual Frontiers in Education Conference,
FIE'98. Treitlstrasse Vienna Austria. 1998; 3:1107-12.

[10] Osée M, Richard A, Biest AV, Mathys P. Educational simulation
of the RiSC processor. International Conference on Engineering
Education(ICEE 2007); 2007.

[11] Hoganson K. The unified parallel speedup model and simulator
Southeast Regional ACM Conference; 2001. p. 1-23.

[12] DE2i-150 FPGA System Manual, ALTERA, 2013.

304
Authorized licensed use limited to: International Islamic University Malaysia. Downloaded on July 11,2023 at 23:06:59 UTC from IEEE Xplore. Restrictions apply.

