DEVELOPMENT AND COMPARATIVE EVALUATION OF
INNOVATIVE BUS-INTERCONNECT METHODOLOGY
FOR PROGRAMMABLE CHIP-BASED SYSTEMS

Mohamed Muftah Eljhani
Department of Computer Engineering, Faculty of Engineering, University of Tripoli

Email: M.Eljhani@uot.edu.ly
Received 8 June 2023, revised 11 October 2023, accepted 2 January 2024

uadlall

System-on-Programmable- dawe_ll AL #3) 5al) dada) Clegaai] ay) jidl) a@ail) g0
JS SOPC Agal 5 pranal g oLi) fige Cus avenall Apalti) 43 50 Slasd) Chip (SoPC)
Bl a1 alail) ML (e dale daal 8 5 5l 02 a0 A8Uall DDl g plaill ol e 50S
pSatidan 5 a0)) ABLaYly aaa OB A i a0 5 DL JSLa (e 0l CadSi
GO e dailall OB dwnis 281y UL jlae Bas g O3lalaa Jagad BN S
“Jr_ R.A.AJ‘)A‘AM J):éﬂ \3.1:'-.'1 i &R .a.émswb E‘):\._\SJ\ «LLA:\Mm \1&4 Tri-State BUSGSJJ‘AA
S 1 B a3 (3 Sl BB A0 (lady Lad FPGA A all AL il 5l 44 siima (338
Glas gl BlSlaa g Al g avanal Gl 138 Gaaaly aSa% 3aa g9 Jlu Y] 2aate paal) UL
Verilog HDL 5¢aY) Ciua s 23l aladiuly aaeiall Ja,Y) e 23l el aUail Zulud)
Ja Y e ailall anall 13 8 -~ yiaall JAL ol okl BB AUl ae U laal) 6) ja)
Aaa LR Gl a8 g il) 85) jee A g ey ¢ JB ABla masig ¢ e de pu Ggiay 2aaal)
e COBL allas 3l dae ,ll ALEY 316 0 e o e s FPGA 2 danlie da yitall ciDELY
)i 2awiall Jl Y1 e Aeildl) LN Jyiads o5y ¢SOPC apanal b ALl duaiiic yde)
Gkl Lalall AlaSiall yi gall Jasi @l e 30 AN MW Jlantina) Jagastl
dasi yall ddUall eDeinl o ¢l gl Cbast G daxial) Jla) e AlEl) laall el
OVl BB e dalal) aadiaul)

ABSTRACT

The increasing complexity of System-On-Programmable-Chip (SoPC) designs has
led to significant challenges in design productivity. The instantiation and interface design
of SoPCs significantly impact system performance and power consumption. This paper
provides an overview of prevalent digital system buses, explores various bus
architectures, and introduces a novel bus architecture. Additionally, it introduces a bus
controller facilitating data path module transactions. Implementing tri-state-based bus
architecture is beneficial for extensive designs with numerous blocks. However, due to
limitations in Field Programmable Gate Array (FPGA) chips regarding tristate drivers for
large buses, a new multiplexer-based bus structure and controller are proposed. This
research involves designing, implementing, and simulating fundamental modules of the
multiplexer-based bus system using Verilog hardware description language.
Subsequently, comparisons with the tri-state-based bus system demonstrate that the
multiplexer-based bus achieves higher speed, lower power dissipation, enhanced
flexibility in timing, and improved testing capabilities. The proposed bus architecture is
suitable for FPGAs and other programmable chips requiring a high-speed, low-power
bus. In SoPC design, multiplexer-based buses are favoured due to easier Intellectual

Journal of Engineering Research (University of Tripoli) Issue (37) March 2024 19

mailto:M.Eljhani@uot.edu.ly

Property integration compared to tri-state-based buses. Moreover, application-specific
integrated circuits prefer internal multiplexer-based buses due to the timing and power
consumption challenges associated with tri-state-based buses caused by capacitive loads
on their nodes.

KEYWORDS: Multiplexer-Based Bus Structure; System-On-Programmable-Chip;
FPGA Design; Field Programmable Gate Arrays; Verilog Hardware
Description Language.

I. INTRODUCTION

Interconnection networks have been an essential component of electrical
engineering from the early days of computers and telephones [1]. Because of the driving
characteristics of metal oxide semiconductor (MOS) transistors, this has become even
more important in the era of very large-scale integration (VLSI) circuitry [2]. Buses are
the simplest type of connector, but because the power and space needed to operate them
at maximum speed increase exponentially with the bus's capacitance, they are a poor
choice in terms of density or power [3]. A bus is a group of digital communication lines
used inside computer systems or within a single integrated circuit (IC) that facilitates data
interchange and transfer between two or more modules in the system. Bus systems, which
serve as an essential means of data transfer, can be tailored for particular uses, such as an
I/0 bus or memory bus. Essentially, the central processing unit (CPU) various
components are connected by an internal system bus. The data bus of a reduced
instruction set computer (RISC) has eight bits. Every instruction is fetched twice by the
system, which is controlled by the state. When the state is zero, the higher eight bits of
the instruction are sent to the responsive register, and the state is set to one. Since the
status is 1, the bottom 8 bits of the instruction are delivered to the responsive register for
the subsequent operation. Signal reset initiates the reset process. All registers are
initialized to 0 and the system ends the current operation when reset is set to 1. The system
remains in the reset state as long as the reset is high. The address is set to 0 and the data
bus is maintained in a high-impedance state [4]. Modern computer buses can use bit serial
and parallel connections, but the early ones were physically parallel electrical cables with
many connections. Moreover, buses can employ point-to-point or multipoint approaches
to concurrently connect two distinct components. System speed and power dissipation are
significantly impacted by system-on-chip bus architectures. In order to achieve the
desired design goals, system designers and the research community have concentrated on
the problem of investigating, assessing, and creating SOPC communication architectures
[5]. There are numerous alternatives to buses that have all been effectively employed in
a variety of ASICs, FPGAs, chips, boards, and computers. Similar to buses, these
solutions are not a magic bullet for all connectivity problems. By eschewing the set route
and schedule of a typical bus, one might explore new design possibilities and infuse some
elegance and originality back into an otherwise uninteresting endeavour [6]. Typically,
the Electronic Design Automation (EDA) design flow starts with the schematic design
entry in Verilog/VHDL hardware description language [7], proceeds through place and
route tools and synthesis, and ends with programming the FPGA. Using the Verilog
hardware description language, the proposed multiplexer bus system is created,
simulated, and compared with the tristate system bus. It is then implemented on the Altera
FPGA development board, Cyclone IV GX FPGA [8,9]. In earlier research, we used
multiplexer and tri-state buses to design and simulate microprocessor system buses.

We discovered that while tri-state-based bus implementation is helpful for large

design applications with lots of design blocks, it can also make testing and

Journal of Engineering Research (University of Tripoli) Issue (37) March 2024 20

synchronization more difficult. Large buses cannot be mounted on FPGA chips due to a
lack of tristate drivers. As an alternative, bus structures based on multiplexers can be used
by designers. Verilog hardware description language (HDL) is used in the design,
implementation, and simulation of the fundamental modules of the proposed
microprocessor bus system [10].

This document is divided into four sections. Section | has the introduction and
literature review of the paper. Section Il provides design methodology of the general bus
structure. The design process and technique for the proposed multiplexer bus structure
(parts A and B, respectively) and the tristate bus structure are shown together with
simulation waveforms and design block diagrams. Section Il1 contains the simulation and
findings. Sections IV contain the paper's conclusion. Using a single bus structure is the
simplest way to connect registers in a system. Since the bus may only be used for one
transfer at a time, only two registers can actively use it at any given moment. All datapath
registers are connected directly to the bus. Data is transferred between datapath registers
via the bus, a subsystem in the design architecture. The design is structured so that each
unit may process one whole word (8 bits) of data at a time in order to achieve high
operation speed. Every bit of a word of data is sent in parallel, concurrently, via eight
wires (one bit per wire), which act as a connecting link between data path registers, when
the word is moved between registers. A bus is a common group of wires. It is crucial to
make sure that only one register functions as a source register at a time and that other
registers don't obstruct the process when data is sent from numerous source registers to
multiple destination registers via a shared bus.

II. METHODOLOGY
The common tristate-based bus and the suggested multiplexer-based bus systems

were created, put into practice, and simulated for comparison's sake. Modelsim and
Quartus Il Intel FPGA software tools are used to simulate and verify the design, which is
created using the Verilog hardware description language. The data path module and the
control unit module are the two primary components that make up any system. The
datapath module (datapathxO, datapathxl, datapathx2, datapathx3) is used to store,
manipulate, and move data between the system's data path registers. Building blocks for
multiplexers, tristate buffers, and registers make up datapath modules. The data path
module's operations are managed by the control unit module. The primary function of the
state machine module, which serves as the brain of the design, is to provide a sequence of
control signals that are used to manage and run the datapath module.

Tristate-based Bus System
Two primary elements comprise the tristate-based bus architecture: a control unit

module and a data path module. There are nine sub-modules in the data path module.
Datapathx0 through Datapathx3 are the four 8-bit registers in the system. The bus
structure is implemented by connecting these registers through the use of tri-state drivers,
as illustrated in Figure (1). Each register's data outputs (q) are linked to tri-state drivers.
The drivers attach the contents of the respective register to the bus wires when they are
activated by their enable signals. On the subsequent active edge of the clock, the register's
contents will be altered if the enable input is set to 1.

Journal of Engineering Research (University of Tripoli) Issue (37) March 2024 21

Control Unit

Rl
£
=

regxd

*— T Datapath I e D;:;ag;;;lh Datapath I =) Datapath

regxi regxl

i
-

.m+

Tristatex0

Tristatex3 I—E—D Tristatex2 I—E—. Tristatex1

Tristate Bus >

-@- T
2P

.m+

Tristatex

Figure 1: Tristate Bus Structure.

Each register has an enable input designated with the letter ena, which stands for
enable. The signal represented by [3;0] governs the ena input for registers. Write while
the corresponding tri-state driver's control signal is called [3:0]. Proceed. The control unit
module generates these signals. There is an additional module block attached to the bus
in addition to the four registers. Using the control input signal e, which is produced by
the control unit module named Enable, the circuit diagram illustrates how eight bits of
data from an external source that is connected to the same bus are used. Making sure that
only one circuit block is attempting to send data onto the bus wires at any given time is
crucial. Datapathx0, Datapathx1, Datapathx2, and Datapathx3 are tri-state drivers that
enable signals. The control unit has to make sure that at any one time, only one of these
drivers is asserted. The signals [3:0] Write, which regulate when data is put into each
register, are likewise generated by the control unit. The control unit generally carries out
a variety of tasks, including data loading into resisters and data transfer from one register
to another. Clock input: The same clock signal that drives the four data path registers also
synchronizes the control circuit. The simulated waveforms of the tristate bus module are
displayed in Figure (2).

4 [Tistatefis ofChock

YU | I e
B it s N A A A N
B4 s o ---------@-@--
B st @--@- -@@

B4 rstefls ofutfotregs |z
B4 TrsteeBus o Datzmet
B4 TrsteteBus o ettt ¢
B4 TrsteteBs o Datzpeti?
B4 st ofatznetd

Figure 2 : Tristate Bus Simulation Waveforms.

Journal of Engineering Research (University of Tripoli) Issue (37) March 2024 22

Data supplied from the outside can be loaded from the bus into data path registers
using the control signals designated [3:0] Input. The data is loaded into datapathx3 when
[3:0] Write = 1000; datapathx2 when [3:0] Write = 0100; datapathx1 when [3:0] Write =
0010; and datapathx0 when [3:0] Write = 0001, respectively; etc. Such actions are carried
out by the finite state machine (FSM) that implements the control. The load values for the
data paths regx3 (55 hex), regx2 (77 hex), regxl (99 hex), and regx0 (00 hex) are as
follows. Data path registers filled with data, data path regx1 contents moved to data path
regx0, data path regx2 to data path regx1, data path regx3 to data path regx2, and data
path regx0 to data path regx3. Overall, data path registers loaded with data.

Multiplexer-based Bus System
The data path module and control unit module are the two primary modules that

make up the suggested multiplexer-based bus design. There are six smaller modules that
make up the data path module. Datapathx0 through Datapathx3 are the four 8-bit registers
in the system. In Figure (3), the bus topology is implemented by connecting these registers
via multiplexers rather than tristate buffers. Every register's data output (q) is linked to a
4tol multiplexer. The multiplexer loads the contents of the matching register onto a 2tol
multiplexer that is attached to the bus when it detects their [1:0] e signals. Each data path
register has an enable input designated by the letter ena, which stands for enable. [3;0]
Write is the signal that governs the ena input for registers, while [1:0] Move is the signal
that governs the related multiplexer output. The control unit module is the source of these
signals.

o4
Control Unit
&= Datapath Datapath Datapath L_. Datapath
regx3 regx2 - regx1 regx0
:
' ;

!

= B
< ¢ Multiplexer Bus >

Figure 3: Multiplexer Bus Structure.

Journal of Engineering Research (University of Tripoli) Issue (37) March 2024 23

Apart from the four registers, there's an additional module block attached to the bus.
The circuit diagram illustrates how to use the control input signal Enable, which is
coupled to the sel signal of the 2 tol mux produced by the control unit module, to place
eight bits of data from an external source on the same bus. It is crucial to make sure that,
at any given moment, only one circuit block is attempting to load data onto the bus wires.
Only one of the enable signals—datapathx0O, datapathx1, datapathx2, or datapathx3—
must be asserted at any one time, according to the control unit. Additionally, the control
unit generates the [3:0] Write signals, which govern when information is fed into each
register. The clock signal used to synchronize the four data path registers also
synchronizes the control circuit. The multiplexer bus module's simulated waveforms are
displayed in Figure (4).

4 Muntus tClock

B4 Mdspin 0 B T I (S B
B4 s e ---------ﬁ-ﬁ--
B4 Mods iz o @-@-@- N 711180 1 1))

B4 Mnus tfututoess

}4 Musts_thDatzpathnd ‘

B4 M fhatapatct

B4 M fhatapatd ‘

B4 Mofus Datathed }
Fi

gure 4: Multiplexer Bus Simulation Waveforms.

The externally supplied data can be loaded from the bus into data path registers by
using the control signals designated [3:0] Write. The data is loaded into datapathx3 when
[3:0] Write = 1000; datapathx2 when [3:0] Write = 0100; datapathx1 when [3:0] Write =
0010; and datapathx0 when [3:0] Write = 0001. These operations are carried out by the
finite state machine (FSM) that implements the control. To compare the performance of
the proposed multiplexer-based bus with the tristate-based bus, we initialized data path
registers with the same values as in the tristate bus. A total of 00 hex was loaded into data
path regx0, 99 hex into data path regx1, 77 hex into data path regx2, and 55 hex into data
path regx3. Data path registers were finally filled with data, and data path regx1's contents
were transferred to data path regx0, data path regx2 was sent to data path regx1, data path
regx3 was transferred to data path regx2, and data path regx0 was transferred to data path
regxa.

Control Unit

A CPU in a computer includes a bus control unit. The control unit in a computer
typically steps through the instruction cycle sequentially. This includes retrieving the
command, retrieving the operands, decoding the command, arranging input/output
processes, carrying out the command, and finally writing the outcomes back to memory.
The control unit modifies its behaviour in order to carry out the subsequent instruction
correctly when it is inserted. Thus, the control unit, which in turn controls the computer,
is directly controlled by the instructions.

Bus Control Design

The system's control was built to input data, transfer it to the data path for upload
into the register, and switch between registers. In order to regulate the input based on the
control state, the control is linked to the data path. The necessary signals, which specify
when data is fed into each register, are also generated by the control unit. The control unit
generally performs a variety of tasks, including data loading into resisters and data
transfer from one register to another. An equal clock signal that governs four registers
serves as the clock input, synchronizing the control circuit. The data path is divided into
three modules: the first module is for the 4-bit register, the second is for the 4-bit MUX

Journal of Engineering Research (University of Tripoli) Issue (37) March 2024 24

4 to 1, the third is for the MUX 2-1. The control module comprises four outputs (data,
write, move, and enable) and two inputs (clock and reset).

Finite State Machine of Bus Control

The control was created using a state machine methodology, the control relies on a
predetermined set of states to function. Thirteen distinct states were identified and
created. Figure (5), shows the subsequent possible states. These states specify how the
control will act and function in various conditions and inputs.

ena=0 ena=0 ena=0

ena=0 ena=0 ena=0

ena=0 ena=0 ena=0 ena=0 ena=0 ena=0

Figure 5: Bus Control FSM State Diagram.

I1l. SIMULATION AND RESULTS

The system is instantiated, simulated, and verified as a top-level module after
creating and simulating each multiplexer bus sub-module separately. The functionality,
speed, and power consumption of the suggested multiplexer bus system were then
assessed in comparison to the tristate bus system, which is specifically designed and
constructed for this purpose. The tristate bus and multiplexer bus simulation waveforms
are displayed in Flgure (6).

o

rigtatefys —————
) e . = . = . = . — L|”””
4 simsTristatefus.th/Encble

-

04 smfliseiEs b |0 fo

0 smfTiseids biwe o0 _ Dmm -- - T
04 smfTisets b 000 ——— E-

B4 simfTristateBus thjuutfritoregs [z] f

e

B4 smTreatls bPstpstl (59

B4 smTieitsls bPstpsthd (7

B4 nTreiatls bPtpstnd (55

— MultiplexerBus
4 e s ofCock L LY "LI'LI' IR "IJ'IJ' LY "U'U' N
4 vsin2: Mudus_iEneble 0 |

B4 vein2: s thata 000053 --—- --- ------
B4) vin2:Mubis._thMove 0] -- --- --
g4 vnzuEs biie (00 | @- 1 D 17 1) D))
B4 vain2: Muus._tfutfmurtoregs 100 g } f 7 } o[T -_E

B4 vein2: Mo batzpathd 00 ‘ o]

-4 vin: Mt atapathet I } I I I

-4 vsin?: MuBus_thDatepathc? |

B4 vin2: s hDatzpats

} "
B[T [T [T T [71

e S || s [A0rs 0 00 s 30 1000 g 10ns 14005 16005
T ot o 1031ns
Figure 6: Simulation Waveforms of Tristate Bus and Multiplexer Bus Systems.

The simulation waveforms that are produced demonstrate that both systems are
using the same data set and operating in the same way, with the exception that the second
module connected data path registers using a multiplexer bus, whereas the first module
used a tristate bus.

Journal of Engineering Research (University of Tripoli) Issue (37) March 2024 25

Register Transfer level

In the Verilog hardware description language, register-transfer-level (RTL) is used
to convert lower-level representations of tristate bus and multiplexer bus modules into
high-level representations. The register transfer level (RTL) model for the multiplexer bus
is depicted in Figure (8), whereas the RTL model for the tristate bus module is shown in
Figure (7). Data transformation is demonstrated in Figures (7,8) when data is transferred
from one register data path to another in the architecture. The combinational logic
component, which is present between every register, loads and transforms the data into the
registers' data channel.

e I
Tiskizfisia]
n,;:D—: ,
] i dzpelpaydveg]
&
£
Ty
Cod | \
Ttz
mm— o 1P
D VA 3 sl
Figure 7: Register Transfer Level for Tristate Bus Module.
{5 Datapathi2(7. 0]
datapathreg:datapathregx0
muxdtoT:muxdto1x muxmux 1l @
datapathreq:datapathregx2 oo o Ll By o =0 0
Clock [T ck VAI7..01 exmux(7..01 toreqsi7..0] datal7..0]
write[3. 015 ena a0l Y2I7..01 f17.01 inmux{7..01 -
data[7..01 | V3[7..01 ;—
— — efl.0]
datapathreg:datapathregx1
nERE E SRS RIS
—— ck
ena a7l {=>0atapathxi[7.0]
data[7..01
—_—)
datapathreq:datapathreax3
L ck
ena Q70 {=»Datapathi3[7..0]
datal7..01
Enable [0
ove[1.. 0[5
Data[7..0l

Figure 8: Register Transfer Level for Multiplexer Bus Module.

The suggested multiplexer-based bus module has less register transfer level than
the tristate-based bus, as shown in Figures (7,8), indicating that it requires fewer FPGA
chip resources to implement the bus system.

Clock to Output Times

The Intel-FPGA Quartus 1l software tool's Time Quest application uses a timing
analyser called clock to report times. The least amount of time needed following a clock
signal transition on an input pin that clocks the register to produce a valid output at an
output pin that is fed by the register. There is always an external pin-to-pin delay
represented by this time.

Journal of Engineering Research (University of Tripoli) Issue (37) March 2024 26

Clock to Output Times

Data Port Clock Port Rise Fall Clock Edge Clock Reference
1 Datapathx0[*] Clock 8.639 |8.617 |Rise Clock
1 - Datapathx0[0] | Clock 8.639 |8.617 |Rise Clock
2 - Datapathx0[1] | Clock 7.576 |7.492 |Rise Clock
3 - Datapathx0[2] |Clock 8.182 |8.165 |Rise Clock
I i Datapathx0[3] Clock 8.514 8.413 Rise Clock
5 - Datapathx0[4] | Clock 8.629 |8.520 |Rise Clock
6 - Datapathx0[5] |Clock 7.731 |7.628 |Rise Clock
7 - Datapathx0[6] Clock 7.892 |7.829 |Rise Clock
8 - Datapathx0[7] |Clock 7.689 |7.650 |Rise Clock
2 Datapathx1[*] Clock 8.444 |8.412 |Rise Clock
1 - Datapathx1[0] | Clock 8.444 |8.412 |Rise Clock
2 - Datapathx1[1] |Clock 7.030 |6.936 |Rise Clock
3 - Datapathx1[2] |Clock 7.077 |6.988 |Rise Clock
4 - Datapathx1[3] |Clock 7.061 |6.978 |Rise Clock
5 - Datapathx1[4] |Clock 6.878 |6.765 |Rise Clock
6 Datapathx1[5] Clock 7.038 6.953 Rise Clock
74 -~ Datapathx1[6] | Clock 8.342 |8.275 |Rise Clock
8 " Datapathx1[7] |Clock 7.259 |7.200 |Rise Clock
3 Datapathx2[*] Clock 9.085 9.078 Rise Clock
1 - Datapathx2[0] |Clock 7.582 |7.489 |Rise Clock
2 -~ Datapathx2[1] |Clock 7.501 [7.395 |Rise Clock
3 - Datapathx2[2] |Clock 7.243 |7.178 |Rise Clock
4 -~ Datapathx2[3] | Clock 9.085 |9.078 |Rise Clock
5 - Datapathx2[4] | Clock 7.909 |7.843 |Rise Clock
6 - Datapathx2[5] | Clock 7.908 |[7.849 |Rise Clock
7 - Datapathx2[6] |Clock 7.586 |7.498 |Rise Clock
8 “-Datapathx2[7] |Clock 7.980 |7.860 |Rise Clock
4 Datapathx3[*] Clock 8.154 |8.082 |Rise Clock
1 -~ Datapathx3[0] |Clock 7.328 |7.226 |Rise Clock
B - Datapathx3[1] | Clock 7.693 |7.589 |Rise Clock
| 3 - Datapathx3[2] |Clock 7.005 |6.917 |Rise Clock
| 4 - Datapathx3[3] | Clock 7.001 |6.916 |Rise Clock
5 - Datapathx3[4] Clock 7.055 |6.955 |Rise Clock
|6 - Datapathx3[5] |Clock 7.761 |7.726 |Rise Clock
T | Datapathx3[6] |Clock 7.017 |6.923 |Rise Clock
. 3 - Datapathx3[7] Clock 8.154 |8.082 |Rise Clock

Figure 9: Tristate Bus Module Clock to Output Times (in Nano seconds).

We can define the minimum clock output time needed for the project as a whole, as
well as any clock signal, any register that drives an output or bidirectional pin, or any
output or bidirectional pin that is driven by a register, in the Quartus Il program. A point-
to-point minimum requirement can also be specified between an output pin and a register,
an output pin and a clock, or a clock and an output pin. The multiplexer bus module in
Figure (10) has shorter time delay than the tristate bus module, according to the time test
conducted for both the tristate bus module in Figure (9) and the multiplexer bus module
in Figure (10). The datapathx0, datapathx1 and datapathx2 outputs of the tristate bus
module have 8.639x10° seconds, 8.444x10° seconds, 9.085x10° seconds, and
8.154x10° seconds, respectively. The datapathx0, datapathxl, datapathx2, and

Journal of Engineering Research (University of Tripoli) Issue (37) March 2024 27

datapathx3 outputs in the multiplexer bus module are 7.218x10° 7.311x10°
7.081x10, and 6.915x10°° seconds, respectively.

Minimum Clock to Output Times

Data Port Clock Port Rise Fall Clock Edge Clock Reference

1 Datapathx0[*] Clock 7.218 |7.097 |Rise Clock
1 1 - Datapathx0[0] |Clock 7.786 |7.710 _ |Rise Clock
12 | - Datapathx0[1] | Clock 7.427 |7.354 |Rise Clock
! 3 - Datapathx0[2] Clock 7.374 |7.291 |Rise Clock
B - Datapathx0[3] | Clock 7.794 |7.683 |Rise Clock
! 5 ‘- Datapathx0[4] |Clock 7.373 |7.255 |Rise Clock
|6 - Datapathx0[5] | Clock 7.218 |7.097 |Rise Clock
‘ 7 - Datapathx0[6] Clock 8.889 |8.864 |Rise Clock
|8 - Datapathx0[7] Clock 8.034 |7.915 |Rise Clock
|2 Datapathx1[*] Clock 7.311 |7.207 |Rise Clock
1 | i Datapathx1[0] Clock 8.711 |8.657 |Rise Clock
| 2 - Datapathx1[1] Clock 7.311 |7.207 |Rise Clock
13 -~ Datapathx1[2] | Clock 8.136 |8.097 |Rise Clock
‘ 4 - Datapathx1[3] Clock 7.827 |7.868 |Rise Clock
} 5 - Datapathx1[4] Clock 7.454 |7.323 |Rise Clock
{ 6 ‘- Datapathx1[5] |Clock 7.811 |7.798 |Rise Clock
| 7 - Datapathx1[6] | Clock 7.966 |7.938 |Rise Clock
| 8 " Datapathx1[7] Clock 7.347 |7.251 |Rise Clock
3 Datapathx2[*] Clock 7.081 6.993 Rise Clock
l 1 - Datapathx2[0] |Clock 7.656 |7.570 |Rise Clock
2 | - Datapathx2[1] Clock 7.847 |7.732 |Rise Clock
3 - Datapathx2[2] Clock 7.081 |6.993 |Rise Clock
1 4 +-Datapathx2[3] | Clock 7.230 |7.096 |Rise Clock
| 5 - Datapathx2[4] | Clock 7.587 |7.455 |Rise Clock
|6 - Datapathx2[5] Clock 7.253 |7.164 |Rise Clock
I 7 b Datapathx2[6] Clock 7.214 7.091 Rise Clock
| 8 “-Datapathx2[7] |Clock 7.263 |7.172 |Rise Clock
| 4 Datapathx3[*] Clock 6.915 |6.829 |Rise Clock
1 | i Datapathx3[0] Clock 7.256 |7.192 |Rise Clock

2 - Datapathx3[1] | Clock 6.915 |6.829 |Rise Clock

3 - Datapathx3[2] |Clock 6.995 |6.869 |Rise Clock

4 - Datapathx3[3] Clock 6.938 |6.852 |Rise Clock

S| i Datapathx3[4] Clock 7.743 |7.663 |Rise Clock
|6 - Datapathx3[5] | Clock 7.117 |7.032 |Rise Clock
| 7 - Datapathx3[6] Clock 8.899 |8.987 |Rise Clock
B “ Datapathx3[7] |Clock 7.202 |7.085 |Rise Clock

Figure 10: Multiplexer Bus Module Clock to Output Times (in Nano seconds).

Power Play Power Analyser

The software tool Intel-FPGA Quartus Il uses a power play power analyser. The
multiplexer bus module in Figure (12), as well as the tristate bus module in Figure (11),
had their thermal power dissipation measured by a power analyser. The process by which
computer processors use electrical energy and release it as heat as a result of resistance in
the electronic circuits is known as processor power dissipation, or processing unit power
dissipation [11]. The findings indicate that the tristate bus module dissipates more thermal
power than the multiplexer bus module.

Journal of Engineering Research (University of Tripoli) Issue (37) March 2024 28

l {/ PowerPlay Power Analyzer Tool 3¢ I

PowerPlay Power Analyzer Summary

PowerPlay Power Analyzer Status Successful - Tue Feb 15 10:12:58 2022
Quartus II 64-Bit Version 12,1 Build 177 11/07/2012 S] Web Edition
Revision Name TristateBus

Top-level Entity Name TristateBus

Family Cydone IV GX

Device EP4CGX15BF14A7

Power Models Final

Total Thermal Power Dissipation 68.23 mW

Core Dynamic Thermal Power Dissipation 0.00 mW

Core Static Thermal Power Dissipation 58.84 mwW/

1/O Thermal Power Dissipation 9.39 mwW

Power Estimation Confidence Low: user provided insufficient toggle rate data

Figure 11: Tristate Bus Module Power Play Power Analyser.

The combined power dissipation of the multiplexer bus module and the tristate bus
module is 68.22x10-3 and 68.23x10-3 watts, respectively.

I -f PowerPlay Power Analyzer Tool & I

PowerPlay Power Analyzer Summary

PowerPlay Power Analyzer Status Successful - Tue Feb 15 10:26:38 2022

Quartus II 64-Bit Version 12.1Build 177 11/07/2012 5] Web Edition

Revision Name MuxBus

Top-evel Entity Name MuxBus

Family Cydone IV GX

Device EP4CGX15BF14A7

Power Models Final

Total Thermal Power Dissipation 68.22 mW

Core Dynamic Thermal Power Dissipation 0,00 m\W

Core Static Thermal Power Dissipation 58.84 mW

1/O Thermal Power Dissipation 9.39 mW

Power Estimation Confidence Low: user provided insufficient togale rate data

Figure 12: Multiplexer Bus Module Power Play Power Analyzer.

FPGA PLACE AND ROUTE

The submodules are created, simulated, and verified after the individual verification
of the multiplexer-based and tri-state bus modules. The Cyclone EP1C6Q240C8 FPGA
evaluation platform, which was created specifically to test the bus system's hardware
capability, was used to develop and test the system (Figure 13). A full electronic design
automation (EDA) printed circuit board system is designed to test and validate the bus
system in order to provide more sophisticated FPGA development tools.

Journal of Engineering Research (University of Tripoli) Issue (37) March 2024 29

IV. CONCLUSION

The design, simulation, and implementation of an effective multiplexer-based bus
structure that can be applied to FPGA designs with constrained tristate bus resources
constitute the paper's primary contribution. The suggested multiplexer-based bus
architecture utilizes fewer hardware resources, has less time delay, and dissipates less
thermal power than the tristate-based bus, as shown by the waveforms and results
acquired from the simulation and testing processes. The study can be expanded in the
future by developing a microprocessor system that uses buses between its internal
registers, arithmetic logic unit, and control unit using a multiplexer-based bus structure
rather than a tristate-based bus structure.

REFERENCES

[1] V.E. Benes, “Mathematical Theory of Connecting Networks and Telephone
Traffic,” Academic Press, 1965.

[2] Foty, “MOSFET Modeling with Spice,” Prentice Hall, 1996.

[3] Johnson and Graham, “High Speed Digital Design: a Handbook of Black
Magic,” Prentice Hall, 1993.

[4] Mohamed Eljhani and Veton Keposka, “Reduced Instruction Set Computer
Design on FPGA”, 2021 IEEE 1st International Maghreb Meeting of the
Conference on Sciences and Techniques of Automatic Control and Computer
Engineering MI-STA, 25-27 May 2021, Tripoli- Libya.

[5] Nikil Dutt, Kaustav Banerjee, Luca Benini, Kanishka Lahiri, Sudeep Pasricha,
"Tutorial 5: SoOC Communication Architectures: Technology, Current Practice,
Research, and Trends", vlsid, pp.8, 20th International Conference on VLSI
Design held jointly with 6th International Conference on Embedded Systems
(VLSID'07), 2007.

[6] Altera Corporation, “Comparing IP Integration Approaches for FPGA
Implementation”.

[7] The IEEE Standard Hardware Description Language based on the Verilog
Hardware Description Language (IEEE Std 1364-2001).

[8] Micheal D. Ciletti, “Advanced Digital Design with the Verilog HDL “Prentice
Hall, 2004.

[9] William Stallings, “Computer Organization and Architecture, Designing for
Performance”, Prentice Hall, 2001.

[10] Esra Tellisi, Jumanah Mansur, and Mohamed Eljhani, “An Alternative
Microprocessor Bus Structure Design on FPGA”, International Science and
Technology Journal 2022.

[11] https://en.wikipedia.org/wiki/Processor_power_dissipation.

Journal of Engineering Research (University of Tripoli) Issue (37) March 2024 30

https://en.wikipedia.org/wiki/Processor_power_dissipation

