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Abstract 
A typical speech recognition system is push-to-talk operated that requires activation. However for those who use 

hands-busy applications, movement may by restricted or impossible.  One alternative is to use Speech-Only 

Interface. The proposed method that is called Wake-Up-Word Speech Recognition (WUW-SR) that utilizes 

speech only interface. A WUW-SR system would allow the user to activate systems (Cell phone, Computer, 

etc.) with only speech commands instead of manual activation. The trend in WUW-SR hardware design is 

towards implementing a complete system on a single chip intended for various applications. This paper presents 

an experimental FPGA design and implementation of a novel architecture of a real time feature extraction 

processor that includes: Voice Activity Detector (VAD), and features extraction, MFCC, LPC, and 

ENH_MFCC. In the WUW-SR system, the recognizer front-end with VAD is located at the terminal which is 

typically connected over a data network(e.g., server)for remote back-end recognition. VAD is responsible for 

segmenting the signal into speech-like and non-speech-like segments. For any given frame VAD reports one of 

two possible states: VAD_ON or VAD_OFF. The back-end is then responsible to score the features that are 

being segmented during VAD_ON stage. The most important characteristic of the presented design is that it 

should guarantee virtually 100% correct rejection for non-WUW (out of vocabulary words - OOV) while 

maintaining correct acceptance rate of 99.9% or higher (in vocabulary words - INV). This requirement sets apart 

WUW-SR from other speech recognition tasks because no existing system can guarantee 100% reliability by 

any measure. 

Keywords:Speech Recognition System (SR); Wake-Up-Word (WUW) Speech Recognition; Front-end (FE); 

Voice Activity Detector (VAD); Feature Extraction; Mel-frequency Cepstral Coefficients (MFCC); Linear 

Predictive Coding (LPC); Enhanced Mel-frequency CepstralCoefficients(ENH_MFCC); Field Programmable 

Gate Arrays (FPGA). 

 

I. Introduction 

The Voice Activity Detector is responsible for 

segmenting the signal into speech and non-speech 

segments. For any given frame, VAD reports one of 

two possible states: VAD_ON or VAD_OFF. Word 

recognition in the Back-end stage begins when the 

VAD is in VAD_ON state, and ends when the VAD 

switches to VAD_OFF state. VAD works in two 

phases: in the first phase, a classifier decides whether 

a single input frame is speech-like or non-speech-

like; in the second phase, the number of speech-

frames and non-speech-frames over a period of time 

is analyzed and certain rules are applied to report the 

final decision (e.g., VAD_ON or VAD_OFF). 

 The VAD is responsible for finding sections of 

speechby segmenting them from the rest of the audio 

stream. The back-endthen will identify whether or 

not the segmented utterance is a WUW. In the 

“Front-end of Wake-Up-Word Speech Recognition 

System Design on FPGA” [1], we showed the 

generation of three sets of spectrograms.  In the 

“Wake-Up-Word Feature Extraction on FPGA” [2], 

we presented an efficient hardware architecture and 

implementation of Front-end of WUW-SR on FPGA. 

This Front-end is responsible for generating three sets 

of features:  

1. Mel-frequency Cepstral Coefficients (MFCC), 

2. Linear Predictive Coding (LPC), and  

3. Enhanced Mel-frequency Cepstral Coefficients 

(ENH-MFCC). 

A great deal of work has been done to address 

the problem of recognizing speech-like segments by 

designing an efficient hardware front-end with built-

in VAD in FPGA.The board that has been usedis 

based on Altera DSP system, acting as a processor 

that is responsible for extracting three different sets 

of features from the input audio signal. 

The feature extraction of speech is an important 

issue in the Front-end. There are two types of 

acoustic measurements of the speech signal. One is 

the parametric modeling approach, which is 

developed to match closely the resonant structure of 

the human vocal tract that produces the 

corresponding speech sound. It is mainly derived 

from Linear Predictive analysis, such as LPC-based 

Cepstrum (LPC). The other approach, MFCCs, is the 
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nonparametric modeling method that originates from 

the human auditory perception system. The MFCCs 

are derived in this form [3].  

In recent studies of speech recognition system, the 

MFCC parameters perform better than others in the 

recognition accuracy [4, 5]. This presented paper 

shows VAD based feature extraction solution. This 

solutionis optimized for implementation in FPGA 

structures. The system is designed to be implemented 

as a System-on- Programmable-Chip (SOPC). This 

design not only has a relatively low resource usage, 

but also maintains a reasonably high level of 

performance (last long if plugged-in buttery usage). 

The remainder of this paper is organized as 

follows: Section II, describes the Wake-Up-Word 

speech recognition and its architecture. Section III, 

describes the embedded front-end of WUW-SR 

design procedure and architecture. Section IV, 

describes the Mel-frequency Cepstral Coefficient 

Feature design. Section V,describes the Linear 

Predictive Coding Feature design.Section VI, 

describes the Enhanced Mel-frequency Cepstral 

Coefficient Feature design. Section VII, describes the 

Voice Activity Detector Design and Implementation. 

Section VIII, describes results and comparisons of 

three spectrograms and features from FPGA 

hardware implementation and C++ front-end 

algorithm. These are followed by conclusions in 

Section IX. 

 

 
 

Figure 1: Overall WUW-SR architecture 

 

II. WUW-SR Overall System Architecture 
As shown in Fig. 1, the WUW-SR can be broken 

down into three components as explained in [6]. The 

front-end system process takes an input waveform 

(“Operator” audio signal) and outputs a sequence of 

parameters; that is MFCCs, LPCs, and ENH-MFCCs 

features as described in [2]. The Voice Activity 

Detector system is responsible for segmenting the 

signal into speech and non-speech segments. For any 

given frame, VAD reports one of two possible states: 

VAD_ON or VAD_OFF.  

Word recognition in the Back-end stage begins when 

the VAD enters VAD_ON state, and ends when the 

VAD switches to VAD_OFF state. Whereas the back-

end process takes this sequence, e.g., VAD_ON state, 

and outputs the recognized command. From the figure 

above, the signal processing module accepts raw 

audio samples and produces spectral representations 

of short time signals. The feature-extraction module 

generates features from this spectral representation, 

which are decoded with the corresponding hidden 

Markov’s models (HMMs). The individual feature 

scores are classified using support vector machines 

(SVMs) into INV, or OOV: in-, out-of-vocabulary 

speech [6]. 

 

III. Embedded Front-end with Built-in VAD 

of WUW-SR Architecture 
As shown in Fig. 2, the new Front-end design is 

divided into twenty-eight modules (five-stages). The 

first seven pink-colored modules represents the pre-

processing stage and used as basic modules to provide 

windowed speech signal for the other stages. The six 

yellow-colored modules represent the LPC stage and 

used to generate 13-LPC features. The five brown-

colored modules represents the MFCC stage and used 

to generate 13 MFCCs features. The five green-

colored modules represents the ENH-MFCC stage 

and used to generate 13 ENH-MFCC features. The 

five red-colored modules represents the VAD stage 

that is responsible for finding segments of spoken 

speech. 
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Figure 2: Front-end with Built-in VAD of WUW-SR Block Diagram 

 

Stage A: Pre-Processing 
1. Analog to Digital Converter ADC.  

2. DC Filtering.  

3. Serial to 32-bit parallel converter.  

4. Integer to floating-point converter.  

5. Pre-emphasis filtering.  

6. Window advance buffering.  

7. Hamming window. 

Stage B: Linear Predictive Coding Coefficients  
1. Autocorrelation Linear Predictive Coding. 

2. Fast Fourier Transform (FFT). 

3. LPC Spectrogram. 

4. Mel-scale Filtering. 

5. Discrete Cosine Transform (DCT). 

Stage C: Mel-Frequency Cepstral Coefficients  
1. Fast Fourier Transform (FFT).  

2. MFCC Spectrogram.  

3. Mel-scale Filtering.  

4. Discrete Cosine Transform (DCT). 

Stage D: Enhanced Mel-Frequency Cepstral     

Coefficients 
1. Enhanced Spectrum. 

2. Enhanced MFCC Spectrogram. 

3. Mel-scale Filtering.  

4. Discrete Cosine Transform (DCT). 

Stage E: Voice Activity Detector  
The five blue-colored modules represents the 

Voice Activity Detector stage.  The VAD is 

responsible for finding utterances spoken in the 

correct context and segmenting them from the rest of 

the audio stream, then the system will identify 

whether or not the segmented utterance is a WUW.  

1. LPC Spectrogram Features.  

2. Log Energy Features.  

3. MFCC Feature.  

4. Voice Activity Detection Logic. 

 

IV. Mel-scale Frequency Cepstral Coefficients 

(MFCC) Design and Implementation 

The feature extraction involves identifying the 

formants in the speech, which represents the 

frequency locations of energy concentrations in the 

speaker’s vocal tract. There are many different 

approaches used: Mel-scale Frequency Cepstral 

Coefficients (MFCC), Linear Predictive Coding 

(LPC), Linear Prediction Cepstral Coefficients 

(LPCC), Reflection Coefficients (RCs). Among these, 
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MFCC has been found to be more robust in the 

presence of background noise compared to other 

algorithms [7]. Also, it offers the best trade-offs 

between performance and size (memory) 

requirements. The primary reason for effectiveness of 

MFCC is that, it models the non-linear auditory 

response of the human ear which resolves frequencies 

on a log scale [8]. 

Intensive efforts have been carried out to achieve 

a high performance front-end. Converting a speech 

waveform into a form suitable for processing by the 

decoder requires several stages as shown in Fig. 2: 

 

1. Filtration: The waveform is sent through a low 

pass filter, typically 4 kHz to 8 kHz. As is   

evidenced by the bandwidth of the telephone 

system being around 4 kHz; this is sufficient for 

comprehension and used a minimum bandwidth 

required for telephony transmittal. 

 

2. Analog-to-Digital Conversion: The process of 

digitizing and quantizing an analog speech 

waveform begin with this stage. Recall that the 

first step in processing speech is to convert the 

analog representations (first air pressure, and then 

analog electric signals from a microphone), into a 

digital signal. 

 

3. Sampling rate: The resulting waveform is 

sampled. Sampling rate theory requires a 

sampling (Nyquist) rate of double the maximum 

frequency (so 8 to 16 kHz as appropriate). The 

sampling rate of 8 kHz was used in our front-end. 

(We used CODEC Chip to perform first, second, 

and third stages). 

 

4. Serial to Parallel Converter: This model gets 

serial digital signal from CODEC and converts it 

to 32-bit.  

5. Integer to floating-point converter: This module 

converts 32-bit, signed integer data to single-

precision (32-bit) floating-point values. The input 

data is routed through the int_2_float 

Megafunction core named ALTFP_CONVERT.  

 

6. Pre-emphasis: the digitalized speech signal s(n) 

is put through a low-order (LPF) to spectrally 

flatten the signal and to make it less susceptible to 

finite precision effects later in the signal 

processing. The filter is represented by:  

y[n] = x[n] – αx [n-1] 
 

Output = Input – (PRE_EMPH_FACTOR * 

Previous_input). 

 

Where we have chosen the value of  

PRE_EMPH_FACTOR(α) as 0.975. 

7. Window Buffering: A 32-bit, 256 deep dual-port 

RAM (DPRAM) stores 200 input samples. A state 

machine handles moving audio data into the 

RAM, and pulling data out of the RAM (40 

samples) to be multiplied by the Hamming 

coefficients, which are stored in a ROM memory.  

 

8. Windowing: The Hamming window function 

smooth the input audio data with a Hamming 

curve prior to the FFT function. This stage slices 

the input signal into discrete time segments. This 

is done by using window N milliseconds, typically 

25 ms wide (200 samples). A Hamming window 

size of 25ms which consists of 200 samples at 8 

KHz sampling frequency and 5 ms frame shift (40 

samples) is picked for our front-end windowing.  

 

9. Fast Fourier Transform: In order to map the 

sound data from the time domain to the frequency 

domain, the Altera IP Megafunction FFT module 

is used. The module is configured so as to produce 

a 200-point FFT. This function is capable of 

taking a streaming data input in natural order, and 

it can also output the transformed data in natural 

order, with maximum latency of 200 clock cycles 

once all the data (200 data samples) has been 

received. 

10. Spectrogram: This module takes the complex 

data generated by the FFT and performs the 

function:   

20 * log10 (fft_real^2 + fft_imag^2). 

We designed spectrogram to show how the 

spectral density of a signal varies with time. We 

used spectrogram module to identify phonetic 

sounds. Digitally sampled data, in the time 

domain, are broken up into chunks, which usually 

overlap, and Fourier transformed to calculate the 

magnitude of the frequency spectrum for each 

chunk. Each chunk then corresponds to a vertical 

line in the image; a measurement of magnitude 

versus frequency for a specific moment in time. 

The spectrums or time plots are then "laid side by 

side" to form the image surface. 

 

11. Mel-scale filtering: While the resulting spectrum 

of the FFT contains information in each frequency 

in linear scale, human hearing is less sensitive at 

frequencies above 1000 Hz. This concept also has 

a direct effect on performance of automatic speech 

recognition systems; therefore, the spectrum is 

warped using a logarithmic Mel scale. In order to 

create this effect on the FFT spectrum, a bank of 

filters is constructed with filters distributed 

equally below 1000 Hz and spaced 

logarithmically above 1000 Hz. 

 

12. Discrete Cosine Transform:DCT is a Fourier-

related transform similar to the discrete Fourier 
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transform (DFT), but using only real numbers. 

DCTs are equivalent to DFTs of roughly twice the 

length, operating on real data with even symmetry 

(since the Fourier transform of a real and even 

function is real and even). A DCT computes a 

sequence of data points in terms of summation of 

cosine functions oscillating at various frequencies. 

The idea of performing DCT on Mel Scale is 

motivated by extraction of the speech frequency 

domain characteristics. DCT module reduces the 

speech signal’s redundant information, and 

reaches the aim of regulating the speech signal 

into feature coefficients with minimal dimensions. 

 

V. Autocorrelation Linear Predictive Coding 

(LPC) Design and Implementation 

As shown in Fig. 2, an additional module named 

Autocorrelation Linear Productive Coding (LPC) 

used to extract the speech as LPC features. The basic 

idea of LPC is to approximate the current speech 

sample as a linear combination of past samples as 

shown in the following equation:   

 

𝑥 𝑛 =  𝑎𝑘  𝑥 𝑛 − 𝑘 + 𝑒 𝑛 

𝑝

𝑘=1

 

 

𝑥 𝑛 − 𝑘 : Previous speech samples 

𝑝:  Order of the model 

𝑎𝑘  :  Prediction coefficient 

𝑒 𝑛 : Prediction error 

 

This module gets windowed data from the 

window module for representing the spectral 

envelope of a digital signal of speech in compressed 

form, using the information of a linear predictive 

model. We used this method to encode good quality 

speech and provide an estimate of speech parameters. 

The goal of this method is to calculate prediction 

coefficients 𝑎𝑘  for each frame. The order of LPC, 

which is the number of coefficients 𝑝, determines 

how closely the prediction coefficients can 

approximate the original spectrum. As the order 

increases, the accuracy of LPC also increases. This 

means the distortion will decrease. The main 

advantage of LPC is usually attributed to the all-pole 

characteristics of vowel spectra. Also, the ear is also 

more sensitive to spectral poles than zeros [9]. In 

comparison to non-parametric spectral modeling 

techniques such as filter banks, LPC is more powerful 

in compressing the spectral information into few filter 

coefficients [10]. 

 

VI. Enhanced Mel-scale Frequency Cepstral 

Coefficients (ENH-MFCC) Design and 

Implementation 
The spectrum enhancement module is used to 

generate ENH-MFCC set of features. We have 

implemented this module as shown in the Fig. 2, to 

perform an enhancement algorithm on the LPC 

spectrum signal. The ENH-MFCC features have a 

higher dynamic range than regular MFCC features, so 

these new features will help the back-end in 

improving the recognition quality and accuracy. 

The algorithm uses only the single-sided 

spectrum, so the state machine starts the calculations 

when 128 data points have been written into the input 

RAM. 

 

VII. Voice Activity Detector (VAD) Design and 

Implementation 
There are various kinds of signals that may 

contain actual speech. In our Front-end system it is 

imperative to monitor and detect any speech signal. 

The algorithm is designed to most efficiently 

delineate between speech vs non-speech.  It will 

consider speech segments that trigger VAD_ON for 

more than 15 frames otherwise it will not trigger. 

To achieve speech / non-speech detection, as 

shown in fig. 3, we designed and implemented VAD 

models. The VAD continuously monitors the system 

and calculates for every frame if the signal is a speech 

signal or a background noise. The VAD uses three 

inputs: Log Energy, LPC Features, and MFCC 

Features; to decide whether VAD is ON or VAD is 

OFF. 

 

 
Figure 3: Voice Activity Detector Architecture 

Those features are finely tuned to detect any 

voice in the speech frame. Each feature has an 

independent detection method. Depending on the 

calculations done by the features, the overall VAD 
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logic reacts by turning the VAD output ON/OFF 

(Speech or Noise Background). Each feature 

calculates the presence of speech by calculating 

Variance and Mean deviation. Each feature has its 

own flag to be set. Each feature is finely tuned to 

meet certain criteria before its feature flag is set.  

The final decision is based on all these 

flags/states; if at least two out of the three are true, the 

overall logic of VAD triggers and the VAD turns ON. 

Fig. 4 shows “Onward” waveform as input audio data 

superimposed with its VAD segmentation, its MFCC 

spectrogram, LPC spectrogram, and ENH-MFCC.The 

VAD, as is implemented, uses three features to 

provide backend with the final decision if the frame 

contains speech. Those three features are: Energy, 

MFCC and LPC [6]. 

The VAD logic depends on at least of two out of 

all three features to trigger in order for VAD to be 

ON. Otherwise VAD is not triggered (OFF). 

In the following sections each individual feature 

is described: 

 

 
 

Figure 4: Speech signal “Onward” with VAD segmentation, MFCC, LPC, and ENH-MFCC 
spectrograms 

 

1. Log Energy Feature  

The Energy feature is computed by squaring the 

samples of the frames. It is used to track the change in 

mean frame energy. In addition it is used to detect if 

the frame contains speech signal or not. If there is a 

drastic change in frame energy the Energy flag 

(log2_frame_energy) is set. This feature function 

receives the frame energy parameter, e.g., 

log2_frame_energy, from the Hamming Window 

module. It uses this parameter to calculate the overall 

frame energy mean and compare it to the present 

frame energy. The mean frame energy, 

mean_log2_fm_en, is dependent on a variable 

lambda, lambda_LTE, which is calculated differently 

in the first few frames. 

The mean is ignored during the VAD ON stage: 

mean_log2_fm_en_VAD_ON. If the difference 

between the mean frame energy and the current frame 

energy is greater than certain  

 

threshold, SNR_THRESHOLD_VAD, Energy flag is 

set. 

 

2. Mel-frequency Cepstral Coefficient Feature 
The Mel-frequency Cepstral Coefficients are 

calculated for each frameand they are included into 

the feature vector comprising MFCC component. 

When the mean value (mean_vad_mfcc_feature) of 

all the frames features is over the current frame’s 

MFCC feature value (local_aver_mfcc_fea_val), the 

flag is set (VAD_MFCC_State_Flag). The mean is 

calculated differently depending on 

VAD_MFCC_State_Flagand depending on the frame 

counter. It is dynamically adapteddepending onactual 

values so it can detect the signal accurately. The mean 

is lowered if the current frame feature value is too 

low compared to the mean calculated up to that point. 

The mean is ignored during the stage where VAD is 

turnedON and is stored into a different variable 

(mean_vad_mfcc_feature_VAD_ON). 

 

3. Linear Predictive Coding Feature 
Linear Predictive Coding is computed from 

Spectrum of the signal. This function uses a different 

from of feature computation. It uses the variance 

measurement of the signal to detect if a speech is 

present. When the current variance (var_spec) is 

much larger than the average variance 

(aver_var_spec) computed from the previous frames, 

it indicates that there is speech. The variance flag 

(VAD_SPEC_State_Flag) is set when there is a 

sudden change in variance when compared to 

previous frames and is turned off if the change is 

minimal. 

 

VIII. Results and Comparisons 
After observing the VAD systemon several test 

utterances we concluded that its hardware 
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implementation performs very well as compared to 

C++ implementation. In addition, the analysis 

included testing of the performance of the hardware 

by comparing its three sets of spectrograms and 

features (MFCC, LPC, and ENH-MFCC) with the 

C++ software implementation of the WUW’s front-

end. 

 The VAD described in this paper has been 

modeled and integrated with the Front-End as a 

processor in Verilog HDL and implemented in low 

cost, high speed, and power efficient (Cyclone III 

EP3C120F780C7) FPGA on DSP development kit. 

The embedded front-end with built-in VAD used 

C++ implementation as a baseline. In addition the 

floating-point MATLAB implementation of the front-

end of WUW was done. Each module was tested to 

ensure correct operation.  

The sample utterance containing the WUW 

“Operator” was sampled with 8 KHz sampling rate. 

This utterances was included in the experiments 

presented in this paper as input audio data for testing 

the WUW’s embedded Front-end. In addition, three 

sets of spectrograms and features produced by the 

front-end were compared with the baseline C++ 

implementation. The results depict: 

As shown in Fig. 5, and 6, below, the VAD, 

MFCC, LPC, and ENH-MFCC spectrograms 

generated from the hardware front-end, and C++ 

baseline front-end are practically identical. 

In Fig. 7, and 8, depict the generated VAD state, 

and MFCC, LPC, and ENH-MFCC features from 

hardware front-end, and baseline C++ are practically 

identical. 

 

 

 
Figure 5: Hardware Front-end with VAD, MFCC, LPC, and Enhanced MFCC Spectrograms for 

“Operator”. The VAD has three states indicating INITIAL; zero - valued, VAD_OFF; one-valued, and 

VAD_ON state; two – valued curve above. 

 

 
Figure 6: C++ Front-end with VAD, MFCC, LPC, and Enhanced MFCC Spectrograms for 

“Operator” Audio Data 
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Figure 7: Hardware Front-end with VAD, MFCC, LPC, and Enhanced MFCC Histograms for 

“Operator” Audio Data. The VAD has three states indicating INITIAL; zero - valued, VAD_OFF; one-

valued, and VAD_ON state; two – valued curve above. 

 

 
Figure 8: C++ Front-end with VAD, MFCC, LPC, and Enhanced MFCC Histograms for “Operator” 

Audio Data 
 

IX. Conclusions and Applications 
In this study, an efficient embedded front-endof 

WUW-SRhardware implementation with built-in 

VAD in FPGA is described. This front-end is 

responsible for generating three sets of features: 

MFCC, LPC, and ENH-MFCC. These features are 

needed to be decoded with corresponding HMMs in 

the back-end stage of the WUW Speech Recognizer. 

The computational complexity and memory 

requirement of three features and VAD algorithms is 

analyzed in detail. The proposed front-end is the first 

embedded hardware system specifically designed for 

WUW-SR feature extraction based on three different 

sets of features. To demonstrate its effectiveness, the 

proposed design has been implemented in cyclone III 

FPGA hardware [11]. The custom DSP board 

developed is a power efficient and flexible in design. 
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